Noah Goshi, Gregory Girardi, Hyehyun Kim, Erkin Seker
{"title":"生物医学设备工程课程中的体验式学习:提案开发和基于原始研究数据的作业。","authors":"Noah Goshi, Gregory Girardi, Hyehyun Kim, Erkin Seker","doi":"10.1007/s43683-022-00094-z","DOIUrl":null,"url":null,"abstract":"<p><p>There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43683-022-00094-z.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experiential Learning in a Biomedical Device Engineering Course: Proposal Development and Raw Research Data-Based Assignments.\",\"authors\":\"Noah Goshi, Gregory Girardi, Hyehyun Kim, Erkin Seker\",\"doi\":\"10.1007/s43683-022-00094-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43683-022-00094-z.</p>\",\"PeriodicalId\":72385,\"journal\":{\"name\":\"Biomedical engineering education\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical engineering education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43683-022-00094-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43683-022-00094-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experiential Learning in a Biomedical Device Engineering Course: Proposal Development and Raw Research Data-Based Assignments.
There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction.
Supplementary information: The online version contains supplementary material available at 10.1007/s43683-022-00094-z.