Oscar Trejo-Cerro , Justyna Broniarczyk , Nezka Kavcic , Michael Myers , Lawrence Banks
{"title":"hpv - 16e7新型潜在磷酸化受体位点的鉴定和表征","authors":"Oscar Trejo-Cerro , Justyna Broniarczyk , Nezka Kavcic , Michael Myers , Lawrence Banks","doi":"10.1016/j.tvr.2023.200270","DOIUrl":null,"url":null,"abstract":"<div><p>Several studies have described functional regulation of high-risk human papillomaviruses (HPVs), E6 and E7 oncoproteins via posttranslational modifications (PTMs). However, how these PTMs modulate the activity of E6 and E7, particularly in their targeting of cellular proteins, is not completely understood. In this study, we show that HPV16 E7 can be phosphorylated by casein kinase I (CKI) and glycogen synthase kinase 3 (GSK3). This principal phosphorylation occurs at threonine residues 5 and 7 with a more minor role for residues 19–20 in the N-terminal region of 16 E7. Intriguingly, whilst mutational analyses suggest that residues 5 and 7 may be dispensable for the transformation of primary baby rat kidney cells by E7, intact residues 19 and 20 are required. Furthermore, negative charges at these residues (TT19-20DD) enhance the pRb-E7 interaction and cells display increased proliferation and invasion capacities. Using a proteomic approach with a phosphorylated peptide spanning the TT19-20 region of HPV16 E7, we have identified a panel of new, phospho-specific E7 interacting partners. These results shed new light on the complexity of N-terminal phosphorylation of E7 and how this can contribute towards expanding the repertoire of E7 targeted pathways.</p></div>","PeriodicalId":52381,"journal":{"name":"Tumour Virus Research","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500460/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and characterisation of novel potential phospho-acceptor sites in HPV-16 E7\",\"authors\":\"Oscar Trejo-Cerro , Justyna Broniarczyk , Nezka Kavcic , Michael Myers , Lawrence Banks\",\"doi\":\"10.1016/j.tvr.2023.200270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several studies have described functional regulation of high-risk human papillomaviruses (HPVs), E6 and E7 oncoproteins via posttranslational modifications (PTMs). However, how these PTMs modulate the activity of E6 and E7, particularly in their targeting of cellular proteins, is not completely understood. In this study, we show that HPV16 E7 can be phosphorylated by casein kinase I (CKI) and glycogen synthase kinase 3 (GSK3). This principal phosphorylation occurs at threonine residues 5 and 7 with a more minor role for residues 19–20 in the N-terminal region of 16 E7. Intriguingly, whilst mutational analyses suggest that residues 5 and 7 may be dispensable for the transformation of primary baby rat kidney cells by E7, intact residues 19 and 20 are required. Furthermore, negative charges at these residues (TT19-20DD) enhance the pRb-E7 interaction and cells display increased proliferation and invasion capacities. Using a proteomic approach with a phosphorylated peptide spanning the TT19-20 region of HPV16 E7, we have identified a panel of new, phospho-specific E7 interacting partners. These results shed new light on the complexity of N-terminal phosphorylation of E7 and how this can contribute towards expanding the repertoire of E7 targeted pathways.</p></div>\",\"PeriodicalId\":52381,\"journal\":{\"name\":\"Tumour Virus Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumour Virus Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666679023000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumour Virus Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666679023000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Identification and characterisation of novel potential phospho-acceptor sites in HPV-16 E7
Several studies have described functional regulation of high-risk human papillomaviruses (HPVs), E6 and E7 oncoproteins via posttranslational modifications (PTMs). However, how these PTMs modulate the activity of E6 and E7, particularly in their targeting of cellular proteins, is not completely understood. In this study, we show that HPV16 E7 can be phosphorylated by casein kinase I (CKI) and glycogen synthase kinase 3 (GSK3). This principal phosphorylation occurs at threonine residues 5 and 7 with a more minor role for residues 19–20 in the N-terminal region of 16 E7. Intriguingly, whilst mutational analyses suggest that residues 5 and 7 may be dispensable for the transformation of primary baby rat kidney cells by E7, intact residues 19 and 20 are required. Furthermore, negative charges at these residues (TT19-20DD) enhance the pRb-E7 interaction and cells display increased proliferation and invasion capacities. Using a proteomic approach with a phosphorylated peptide spanning the TT19-20 region of HPV16 E7, we have identified a panel of new, phospho-specific E7 interacting partners. These results shed new light on the complexity of N-terminal phosphorylation of E7 and how this can contribute towards expanding the repertoire of E7 targeted pathways.