{"title":"妊娠期糖尿病的脂质组学。","authors":"Yi Wang, Xiong-Fei Pan, An Pan","doi":"10.1097/MOL.0000000000000858","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Epidemiological and mechanistic studies have reported relationships between blood lipids, mostly measured by traditional method in clinical settings, and gestational diabetes mellitus (GDM). Recent advances of high-throughput lipidomics techniques have made available more comprehensive lipid profiling in biological samples. This review aims to summarize evidence from prospective studies in assessing relations between blood lipids and GDM, and discuss potential underlying mechanisms.</p><p><strong>Recent findings: </strong>Mass spectrometry and nuclear magnetic resonance spectroscopy-based analytical platforms are extensively used in lipidomics research. Epidemiological studies have identified multiple novel lipidomic biomarkers that are associated with risk of GDM, such as certain types of fatty acids, glycerolipids, glycerophospholipids, sphingolipids, cholesterol, and lipoproteins. However, the findings are inconclusive mainly due to the heterogeneities in study populations, sample sizes, and analytical platforms. Mechanistic evidence indicates that abnormal lipid metabolism may be involved in the pathogenesis of GDM by impairing pancreatic β-cells and inducing insulin resistance through several etiologic pathways, such as inflammation and oxidative stress.</p><p><strong>Summary: </strong>Lipidomics is a powerful tool to study pathogenesis and biomarkers for GDM. Lipidomic biomarkers and pathways could help to identify women at high risk for GDM and could be potential targets for early prevention and intervention of GDM.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":"34 1","pages":"1-11"},"PeriodicalIF":3.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipidomics in gestational diabetes mellitus.\",\"authors\":\"Yi Wang, Xiong-Fei Pan, An Pan\",\"doi\":\"10.1097/MOL.0000000000000858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Epidemiological and mechanistic studies have reported relationships between blood lipids, mostly measured by traditional method in clinical settings, and gestational diabetes mellitus (GDM). Recent advances of high-throughput lipidomics techniques have made available more comprehensive lipid profiling in biological samples. This review aims to summarize evidence from prospective studies in assessing relations between blood lipids and GDM, and discuss potential underlying mechanisms.</p><p><strong>Recent findings: </strong>Mass spectrometry and nuclear magnetic resonance spectroscopy-based analytical platforms are extensively used in lipidomics research. Epidemiological studies have identified multiple novel lipidomic biomarkers that are associated with risk of GDM, such as certain types of fatty acids, glycerolipids, glycerophospholipids, sphingolipids, cholesterol, and lipoproteins. However, the findings are inconclusive mainly due to the heterogeneities in study populations, sample sizes, and analytical platforms. Mechanistic evidence indicates that abnormal lipid metabolism may be involved in the pathogenesis of GDM by impairing pancreatic β-cells and inducing insulin resistance through several etiologic pathways, such as inflammation and oxidative stress.</p><p><strong>Summary: </strong>Lipidomics is a powerful tool to study pathogenesis and biomarkers for GDM. Lipidomic biomarkers and pathways could help to identify women at high risk for GDM and could be potential targets for early prevention and intervention of GDM.</p>\",\"PeriodicalId\":11109,\"journal\":{\"name\":\"Current opinion in lipidology\",\"volume\":\"34 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in lipidology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOL.0000000000000858\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOL.0000000000000858","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Purpose of review: Epidemiological and mechanistic studies have reported relationships between blood lipids, mostly measured by traditional method in clinical settings, and gestational diabetes mellitus (GDM). Recent advances of high-throughput lipidomics techniques have made available more comprehensive lipid profiling in biological samples. This review aims to summarize evidence from prospective studies in assessing relations between blood lipids and GDM, and discuss potential underlying mechanisms.
Recent findings: Mass spectrometry and nuclear magnetic resonance spectroscopy-based analytical platforms are extensively used in lipidomics research. Epidemiological studies have identified multiple novel lipidomic biomarkers that are associated with risk of GDM, such as certain types of fatty acids, glycerolipids, glycerophospholipids, sphingolipids, cholesterol, and lipoproteins. However, the findings are inconclusive mainly due to the heterogeneities in study populations, sample sizes, and analytical platforms. Mechanistic evidence indicates that abnormal lipid metabolism may be involved in the pathogenesis of GDM by impairing pancreatic β-cells and inducing insulin resistance through several etiologic pathways, such as inflammation and oxidative stress.
Summary: Lipidomics is a powerful tool to study pathogenesis and biomarkers for GDM. Lipidomic biomarkers and pathways could help to identify women at high risk for GDM and could be potential targets for early prevention and intervention of GDM.
期刊介绍:
With its easy-to-digest reviews on important advances in world literature, Current Opinion in Lipidology offers expert evaluation on a wide range of topics from six key disciplines including nutrition and metabolism, genetics and molecular biology, and hyperlipidaemia and cardiovascular disease. Published bimonthly, each issue covers in detail the most pertinent advances in these fields from the previous year. This is supplemented by a section of Bimonthly Updates, which deliver an insight into new developments at the cutting edge of the disciplines covered in the journal.