二十碳五烯酸通过抑制菌丝形成和刺激宿主免疫反应,影响秀丽隐杆线虫中白色念珠菌的发病机制。

IF 5.5 3区 医学 Q1 IMMUNOLOGY Medical Microbiology and Immunology Pub Date : 2023-10-01 Epub Date: 2023-09-06 DOI:10.1007/s00430-023-00777-6
N Z Mokoena, H Steyn, A Hugo, T Dix-Peek, C Dickens, O M N Gcilitshana, O Sebolai, J Albertyn, C H Pohl
{"title":"二十碳五烯酸通过抑制菌丝形成和刺激宿主免疫反应,影响秀丽隐杆线虫中白色念珠菌的发病机制。","authors":"N Z Mokoena,&nbsp;H Steyn,&nbsp;A Hugo,&nbsp;T Dix-Peek,&nbsp;C Dickens,&nbsp;O M N Gcilitshana,&nbsp;O Sebolai,&nbsp;J Albertyn,&nbsp;C H Pohl","doi":"10.1007/s00430-023-00777-6","DOIUrl":null,"url":null,"abstract":"<p><p>The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"349-368"},"PeriodicalIF":5.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501937/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response.\",\"authors\":\"N Z Mokoena,&nbsp;H Steyn,&nbsp;A Hugo,&nbsp;T Dix-Peek,&nbsp;C Dickens,&nbsp;O M N Gcilitshana,&nbsp;O Sebolai,&nbsp;J Albertyn,&nbsp;C H Pohl\",\"doi\":\"10.1007/s00430-023-00777-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"212 5\",\"pages\":\"349-368\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-023-00777-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-023-00777-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摄入ω-3多不饱和脂肪酸,包括二十碳五烯酸(EPA),由于其抗炎特性,对健康有益。这种脂肪酸在体外也表现出抗真菌特性。为了确定这种抗真菌特性在体内是否有效,我们在秀丽隐杆线虫感染模型(哺乳动物宿主模型的替代品)中研究了EPA如何影响白色念珠菌的发病机制。线虫在感染前补充了EPA,并研究了EPA对秀丽隐杆线虫脂质代谢、存活和免疫反应的影响。此外,还研究了EPA对白色念珠菌菌丝形成的影响。研究发现,补充EPA通过调节参与脂肪酸和类花生酸产生的基因,改变了秀丽隐杆线虫的脂质组成,但没有改变其不饱和指数。补充EPA还延迟了白色念珠菌对秀丽隐杆线虫的杀死,这是由于通过EPA的二十碳烷代谢产物17,18-环氧二十碳四烯酸的作用抑制了体内菌丝的形成。此外,补充EPA还导致白色念珠菌生物膜相关基因表达的差异表达,并刺激秀丽隐杆线虫的免疫反应。在该模型中,这提供了EPA和宿主对微生物感染易感性之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response.

The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
0.00%
发文量
29
审稿时长
1 months
期刊介绍: Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens. MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question. The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention. The following categories of manuscripts will not be considered for publication in MMIM: submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest, manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs, manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action, manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem, case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.
期刊最新文献
Dissemination of arr-2 and arr-3 is associated with class 1 integrons in Klebsiella pneumoniae clinical isolates from Portugal. In silico identification and ex vivo evaluation of Toxoplasma gondii peptides restricted to HLA-A*02, HLA-A*24 and HLA-B*35 alleles in human PBMC from a Colombian population. Deciphering long-term immune effects of HIV-1/SARS-CoV-2 co-infection: a longitudinal study. Significance of diagnostic and therapeutic potential of serum endothelial and inflammatory biomarkers in defining disease severity of dengue infected patients. Proportions of IgA antibodies targeting glycosylated epitopes of secreted Escherichia coli mucinase YghJ in initial plasmablast response differ from salivary and intestinally secreted IgA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1