Abraham Takkouche , Xinru Qiu , Mayya Sedova , Lukasz Jaroszewski , Adam Godzik
{"title":"TpLRR/ bspa样LRR蛋白的异常结构和功能特征","authors":"Abraham Takkouche , Xinru Qiu , Mayya Sedova , Lukasz Jaroszewski , Adam Godzik","doi":"10.1016/j.jsb.2023.108011","DOIUrl":null,"url":null,"abstract":"<div><p>Leucine Rich Repeat (LRR) domains, are present in hundreds of thousands of proteins across all kingdoms of life and are typically involved in protein–protein interactions and ligand recognition. LRR domains are classified into eight classes and when examined in three dimensions seven, of them form curved solenoid-like super-helices, also described as toruses, with a beta sheet on the concave (inside) and stacked alpha-helices on the convex (outside) of the torus. Here we present an overview of the least characterized 8th class of LRR proteins, the TpLRR-like LRRs, named after the <em>Treponema pallidum</em> protein Tp0225. Proteins from the TpLRR class differ from the proteins in all other known LRR classes by having a flipped curvature, with the beta sheet on the convex side of the torus and irregular secondary structure instead of helices on the opposite, now concave site. TpLRR proteins also present highly divergent sequence pattern of individual repeats and can associate with specific types of additional domains. Several of the characterized proteins from this class, specifically the BspA-like proteins, were found in human bacterial and protozoan pathogens, playing an important role in the interactions between the pathogens and the host immune system. In this paper we surveyed all existing experimental structures and selected AlphaFold models of the best-known proteins containing this class of LRR repeats, analyzing the relation between the pattern of conserved residues, specific structural features and functions of these proteins.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unusual structural and functional features of TpLRR/BspA-like LRR proteins\",\"authors\":\"Abraham Takkouche , Xinru Qiu , Mayya Sedova , Lukasz Jaroszewski , Adam Godzik\",\"doi\":\"10.1016/j.jsb.2023.108011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Leucine Rich Repeat (LRR) domains, are present in hundreds of thousands of proteins across all kingdoms of life and are typically involved in protein–protein interactions and ligand recognition. LRR domains are classified into eight classes and when examined in three dimensions seven, of them form curved solenoid-like super-helices, also described as toruses, with a beta sheet on the concave (inside) and stacked alpha-helices on the convex (outside) of the torus. Here we present an overview of the least characterized 8th class of LRR proteins, the TpLRR-like LRRs, named after the <em>Treponema pallidum</em> protein Tp0225. Proteins from the TpLRR class differ from the proteins in all other known LRR classes by having a flipped curvature, with the beta sheet on the convex side of the torus and irregular secondary structure instead of helices on the opposite, now concave site. TpLRR proteins also present highly divergent sequence pattern of individual repeats and can associate with specific types of additional domains. Several of the characterized proteins from this class, specifically the BspA-like proteins, were found in human bacterial and protozoan pathogens, playing an important role in the interactions between the pathogens and the host immune system. In this paper we surveyed all existing experimental structures and selected AlphaFold models of the best-known proteins containing this class of LRR repeats, analyzing the relation between the pattern of conserved residues, specific structural features and functions of these proteins.</p></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847723000746\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847723000746","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unusual structural and functional features of TpLRR/BspA-like LRR proteins
Leucine Rich Repeat (LRR) domains, are present in hundreds of thousands of proteins across all kingdoms of life and are typically involved in protein–protein interactions and ligand recognition. LRR domains are classified into eight classes and when examined in three dimensions seven, of them form curved solenoid-like super-helices, also described as toruses, with a beta sheet on the concave (inside) and stacked alpha-helices on the convex (outside) of the torus. Here we present an overview of the least characterized 8th class of LRR proteins, the TpLRR-like LRRs, named after the Treponema pallidum protein Tp0225. Proteins from the TpLRR class differ from the proteins in all other known LRR classes by having a flipped curvature, with the beta sheet on the convex side of the torus and irregular secondary structure instead of helices on the opposite, now concave site. TpLRR proteins also present highly divergent sequence pattern of individual repeats and can associate with specific types of additional domains. Several of the characterized proteins from this class, specifically the BspA-like proteins, were found in human bacterial and protozoan pathogens, playing an important role in the interactions between the pathogens and the host immune system. In this paper we surveyed all existing experimental structures and selected AlphaFold models of the best-known proteins containing this class of LRR repeats, analyzing the relation between the pattern of conserved residues, specific structural features and functions of these proteins.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure