{"title":"心脏起搏器技术在并发症处理方面的最新进展综述。","authors":"Megan Lowe, Lily Nguyen, Dhiman J Patel","doi":"10.1615/JLongTermEffMedImplants.2022039586","DOIUrl":null,"url":null,"abstract":"<p><p>The total number of annual pacemaker implantations continues to grow globally, and help patients with heart rhythm disorders with an improved quality of life and reduced mortality. The first implantable pacemakers appeared in 1965, characterized by their bulkiness, short battery life, and a single pacing mode. Innovation led to the modern pacemaker: a smaller system with improved battery life and capacity, and innovation in lead technology. Certain arrhythmia conditions may also qualify for leadless pacemaker implantation, thus eliminating the spectrum of complications that could occur with leads. Adverse events can be divided into acute (perforation, lead dislodgement, infection) and long-term (lead fractures, device infection, insulation failure). Traditional long-term complications with leads occur in 10% of patients, compared with device-related adverse effects observed in 6.7% of leadless pacemakers. Furthermore, cardiac pacemaker implantation results in quality of life improvements across all age groups. Large cardiac rehabilitation studies have demonstrated the effectiveness of exercise in reducing the physical complications involved with pacemaker implantation. Of the three randomized controlled trials examined, all of them reported some benefit of exercise in the intervention group compared with the control. The following review aims to discuss the multitude of pacemaker options potentially available for the clinician, complications, their course of management, and the path forward with innovations arising out of previous research within the field.</p>","PeriodicalId":16125,"journal":{"name":"Journal of long-term effects of medical implants","volume":"33 4","pages":"21-29"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of the Recent Advances of Cardiac Pacemaker Technology in Handling Complications.\",\"authors\":\"Megan Lowe, Lily Nguyen, Dhiman J Patel\",\"doi\":\"10.1615/JLongTermEffMedImplants.2022039586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The total number of annual pacemaker implantations continues to grow globally, and help patients with heart rhythm disorders with an improved quality of life and reduced mortality. The first implantable pacemakers appeared in 1965, characterized by their bulkiness, short battery life, and a single pacing mode. Innovation led to the modern pacemaker: a smaller system with improved battery life and capacity, and innovation in lead technology. Certain arrhythmia conditions may also qualify for leadless pacemaker implantation, thus eliminating the spectrum of complications that could occur with leads. Adverse events can be divided into acute (perforation, lead dislodgement, infection) and long-term (lead fractures, device infection, insulation failure). Traditional long-term complications with leads occur in 10% of patients, compared with device-related adverse effects observed in 6.7% of leadless pacemakers. Furthermore, cardiac pacemaker implantation results in quality of life improvements across all age groups. Large cardiac rehabilitation studies have demonstrated the effectiveness of exercise in reducing the physical complications involved with pacemaker implantation. Of the three randomized controlled trials examined, all of them reported some benefit of exercise in the intervention group compared with the control. The following review aims to discuss the multitude of pacemaker options potentially available for the clinician, complications, their course of management, and the path forward with innovations arising out of previous research within the field.</p>\",\"PeriodicalId\":16125,\"journal\":{\"name\":\"Journal of long-term effects of medical implants\",\"volume\":\"33 4\",\"pages\":\"21-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of long-term effects of medical implants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/JLongTermEffMedImplants.2022039586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of long-term effects of medical implants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JLongTermEffMedImplants.2022039586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Dentistry","Score":null,"Total":0}
A Review of the Recent Advances of Cardiac Pacemaker Technology in Handling Complications.
The total number of annual pacemaker implantations continues to grow globally, and help patients with heart rhythm disorders with an improved quality of life and reduced mortality. The first implantable pacemakers appeared in 1965, characterized by their bulkiness, short battery life, and a single pacing mode. Innovation led to the modern pacemaker: a smaller system with improved battery life and capacity, and innovation in lead technology. Certain arrhythmia conditions may also qualify for leadless pacemaker implantation, thus eliminating the spectrum of complications that could occur with leads. Adverse events can be divided into acute (perforation, lead dislodgement, infection) and long-term (lead fractures, device infection, insulation failure). Traditional long-term complications with leads occur in 10% of patients, compared with device-related adverse effects observed in 6.7% of leadless pacemakers. Furthermore, cardiac pacemaker implantation results in quality of life improvements across all age groups. Large cardiac rehabilitation studies have demonstrated the effectiveness of exercise in reducing the physical complications involved with pacemaker implantation. Of the three randomized controlled trials examined, all of them reported some benefit of exercise in the intervention group compared with the control. The following review aims to discuss the multitude of pacemaker options potentially available for the clinician, complications, their course of management, and the path forward with innovations arising out of previous research within the field.
期刊介绍:
MEDICAL IMPLANTS are being used in every organ of the human body. Ideally, medical implants must have biomechanical properties comparable to those of autogenous tissues without any adverse effects. In each anatomic site, studies of the long-term effects of medical implants must be undertaken to determine accurately the safety and performance of the implants. Today, implant surgery has become an interdisciplinary undertaking involving a number of skilled and gifted specialists. For example, successful cochlear implants will involve audiologists, audiological physicians, speech and language therapists, otolaryngologists, nurses, neuro-otologists, teachers of the deaf, hearing therapists, cochlear implant manufacturers, and others involved with hearing-impaired and deaf individuals.