{"title":"调节Nur77-TLR4/MyD88信号通路是人参皂苷Rc通过去活化肝星状细胞来改善肝纤维化消退所必需的。","authors":"Bo-Feng Qin , Shan Gao , Qi-yuan Feng, Wei Chen, Hai-Ming Sun, Jian Song","doi":"10.1016/j.acthis.2023.152079","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>HSCs (hepatic stellate cells) contribute to the excessive extracellular matrix<span> (ECM) deposition plays a key role in the progression of hepatic fibrosis<span>. The present study focused on the hepatoprotective effect of Ginsenoside Rc (Rc), one of the </span></span></span>protopanaxadiol<span><span><span> type ginsenoside, which has contributed to reverse activated HSCs to improve hepatic fibrosis via regulating Nur77-TLR4/MyD88 signaling pathway. We established the hepatic fibrosis model by </span>intraperitoneal injection of </span>carbon tetrachloride (CCl</span></span><sub>4</sub><span><span>). And HSCs were stimulated with TGF-β, followed by silencing of Nur77, and then incubated in Rc. Rc significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Rc could upregulate the Nur77 and downregulate fibrosis markers in the liver of mice, including decreasing the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. Rc significantly increased the expression of Nur77 and suppressed the production of ECM in HSCs. Rc inhibited </span>TLR4<span><span><span><span> signaling pathway, consequently reversing the inflammatory response, including the production of MyD88, </span>IRAK1, </span>IRAK4 and IL-23. When Nur77 was knocked in TGF-β-stimulated HSCs, TLR4 and α-SMA production were increased. Rc suppressed these activatory effects in Nur77 knockdown HSCs. Rc reduced inflammatory reaction by regulating the Nur77-TLR4 signaling pathway while suppressing the </span>fibrogenesis<span> suggesting, underscoring a promising approach of Rc for the treatment in hepatic fibrosis. Targeting Nur77-TLR4 signaling in HSCs would be the potential strategy for Rc against hepatic fibrosis.</span></span></span></p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"125 7","pages":"Article 152079"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of Nur77-TLR4/MyD88 signaling pathway is required for Ginsenoside Rc ameliorates hepatic fibrosis regression by deactivating hepatic stellate cells\",\"authors\":\"Bo-Feng Qin , Shan Gao , Qi-yuan Feng, Wei Chen, Hai-Ming Sun, Jian Song\",\"doi\":\"10.1016/j.acthis.2023.152079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>HSCs (hepatic stellate cells) contribute to the excessive extracellular matrix<span> (ECM) deposition plays a key role in the progression of hepatic fibrosis<span>. The present study focused on the hepatoprotective effect of Ginsenoside Rc (Rc), one of the </span></span></span>protopanaxadiol<span><span><span> type ginsenoside, which has contributed to reverse activated HSCs to improve hepatic fibrosis via regulating Nur77-TLR4/MyD88 signaling pathway. We established the hepatic fibrosis model by </span>intraperitoneal injection of </span>carbon tetrachloride (CCl</span></span><sub>4</sub><span><span>). And HSCs were stimulated with TGF-β, followed by silencing of Nur77, and then incubated in Rc. Rc significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Rc could upregulate the Nur77 and downregulate fibrosis markers in the liver of mice, including decreasing the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. Rc significantly increased the expression of Nur77 and suppressed the production of ECM in HSCs. Rc inhibited </span>TLR4<span><span><span><span> signaling pathway, consequently reversing the inflammatory response, including the production of MyD88, </span>IRAK1, </span>IRAK4 and IL-23. When Nur77 was knocked in TGF-β-stimulated HSCs, TLR4 and α-SMA production were increased. Rc suppressed these activatory effects in Nur77 knockdown HSCs. Rc reduced inflammatory reaction by regulating the Nur77-TLR4 signaling pathway while suppressing the </span>fibrogenesis<span> suggesting, underscoring a promising approach of Rc for the treatment in hepatic fibrosis. Targeting Nur77-TLR4 signaling in HSCs would be the potential strategy for Rc against hepatic fibrosis.</span></span></span></p></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"125 7\",\"pages\":\"Article 152079\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128123000855\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123000855","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Regulation of Nur77-TLR4/MyD88 signaling pathway is required for Ginsenoside Rc ameliorates hepatic fibrosis regression by deactivating hepatic stellate cells
HSCs (hepatic stellate cells) contribute to the excessive extracellular matrix (ECM) deposition plays a key role in the progression of hepatic fibrosis. The present study focused on the hepatoprotective effect of Ginsenoside Rc (Rc), one of the protopanaxadiol type ginsenoside, which has contributed to reverse activated HSCs to improve hepatic fibrosis via regulating Nur77-TLR4/MyD88 signaling pathway. We established the hepatic fibrosis model by intraperitoneal injection of carbon tetrachloride (CCl4). And HSCs were stimulated with TGF-β, followed by silencing of Nur77, and then incubated in Rc. Rc significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Rc could upregulate the Nur77 and downregulate fibrosis markers in the liver of mice, including decreasing the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. Rc significantly increased the expression of Nur77 and suppressed the production of ECM in HSCs. Rc inhibited TLR4 signaling pathway, consequently reversing the inflammatory response, including the production of MyD88, IRAK1, IRAK4 and IL-23. When Nur77 was knocked in TGF-β-stimulated HSCs, TLR4 and α-SMA production were increased. Rc suppressed these activatory effects in Nur77 knockdown HSCs. Rc reduced inflammatory reaction by regulating the Nur77-TLR4 signaling pathway while suppressing the fibrogenesis suggesting, underscoring a promising approach of Rc for the treatment in hepatic fibrosis. Targeting Nur77-TLR4 signaling in HSCs would be the potential strategy for Rc against hepatic fibrosis.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted