Mariana Abrantes do Amaral , Lais Cavalieri Paredes , Barbara Nunes Padovani , Juliana Moreira Mendonça-Gomes , Luan Fávero Montes , Niels Olsen Saraiva Câmara , Camila Morales Fénero
{"title":"斑马鱼的线粒体与免疫系统的联系","authors":"Mariana Abrantes do Amaral , Lais Cavalieri Paredes , Barbara Nunes Padovani , Juliana Moreira Mendonça-Gomes , Luan Fávero Montes , Niels Olsen Saraiva Câmara , Camila Morales Fénero","doi":"10.1016/j.fsirep.2021.100019","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients’ availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish<em>.</em> However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"2 ","pages":"Article 100019"},"PeriodicalIF":2.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fsirep.2021.100019","citationCount":"4","resultStr":"{\"title\":\"Mitochondrial connections with immune system in Zebrafish\",\"authors\":\"Mariana Abrantes do Amaral , Lais Cavalieri Paredes , Barbara Nunes Padovani , Juliana Moreira Mendonça-Gomes , Luan Fávero Montes , Niels Olsen Saraiva Câmara , Camila Morales Fénero\",\"doi\":\"10.1016/j.fsirep.2021.100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients’ availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish<em>.</em> However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.</p></div>\",\"PeriodicalId\":73029,\"journal\":{\"name\":\"Fish and shellfish immunology reports\",\"volume\":\"2 \",\"pages\":\"Article 100019\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fsirep.2021.100019\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and shellfish immunology reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667011921000141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667011921000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Mitochondrial connections with immune system in Zebrafish
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients’ availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.