{"title":"协变量适应性随机化下基于回归的多重治疗效果估计。","authors":"Yujia Gu, Hanzhong Liu, Wei Ma","doi":"10.1111/biom.13925","DOIUrl":null,"url":null,"abstract":"<p>Covariate-adaptive randomization methods are widely used in clinical trials to balance baseline covariates. Recent studies have shown the validity of using regression-based estimators for treatment effects without imposing functional form requirements on the true data generation model. These studies have had limitations in certain scenarios; for example, in the case of multiple treatment groups, these studies did not consider additional covariates or assumed that the allocation ratios were the same across strata. To address these limitations, we develop a stratum-common estimator and a stratum-specific estimator under multiple treatments. We derive the asymptotic behaviors of these estimators and propose consistent nonparametric estimators for asymptotic variances. To determine their efficiency, we compare the estimators with the stratified difference-in-means estimator as the benchmark. We find that the stratum-specific estimator guarantees efficiency gains, regardless of whether the allocation ratios across strata are the same or different. Our conclusions were also validated by simulation studies and a real clinical trial example.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"79 4","pages":"2869-2880"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression-based multiple treatment effect estimation under covariate-adaptive randomization\",\"authors\":\"Yujia Gu, Hanzhong Liu, Wei Ma\",\"doi\":\"10.1111/biom.13925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covariate-adaptive randomization methods are widely used in clinical trials to balance baseline covariates. Recent studies have shown the validity of using regression-based estimators for treatment effects without imposing functional form requirements on the true data generation model. These studies have had limitations in certain scenarios; for example, in the case of multiple treatment groups, these studies did not consider additional covariates or assumed that the allocation ratios were the same across strata. To address these limitations, we develop a stratum-common estimator and a stratum-specific estimator under multiple treatments. We derive the asymptotic behaviors of these estimators and propose consistent nonparametric estimators for asymptotic variances. To determine their efficiency, we compare the estimators with the stratified difference-in-means estimator as the benchmark. We find that the stratum-specific estimator guarantees efficiency gains, regardless of whether the allocation ratios across strata are the same or different. Our conclusions were also validated by simulation studies and a real clinical trial example.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"79 4\",\"pages\":\"2869-2880\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/biom.13925\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/biom.13925","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Regression-based multiple treatment effect estimation under covariate-adaptive randomization
Covariate-adaptive randomization methods are widely used in clinical trials to balance baseline covariates. Recent studies have shown the validity of using regression-based estimators for treatment effects without imposing functional form requirements on the true data generation model. These studies have had limitations in certain scenarios; for example, in the case of multiple treatment groups, these studies did not consider additional covariates or assumed that the allocation ratios were the same across strata. To address these limitations, we develop a stratum-common estimator and a stratum-specific estimator under multiple treatments. We derive the asymptotic behaviors of these estimators and propose consistent nonparametric estimators for asymptotic variances. To determine their efficiency, we compare the estimators with the stratified difference-in-means estimator as the benchmark. We find that the stratum-specific estimator guarantees efficiency gains, regardless of whether the allocation ratios across strata are the same or different. Our conclusions were also validated by simulation studies and a real clinical trial example.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.