携带恙虫病东方体的细恙螨的遗传变异。恙虫病是引起恙虫病的细菌病原体。

IF 1 4区 医学 Q4 PARASITOLOGY Journal of Parasitology Pub Date : 2023-07-01 DOI:10.1645/22-97
Motohiko Ogawa, Nobuhiro Takada, Shinichi Noda, Mamoru Takahashi, Minenosuke Matsutani, Daisuke Kageyama, Hideki Ebihara
{"title":"携带恙虫病东方体的细恙螨的遗传变异。恙虫病是引起恙虫病的细菌病原体。","authors":"Motohiko Ogawa, Nobuhiro Takada, Shinichi Noda, Mamoru Takahashi, Minenosuke Matsutani, Daisuke Kageyama, Hideki Ebihara","doi":"10.1645/22-97","DOIUrl":null,"url":null,"abstract":"<p><p>Leptotrombidium (Acari: Trombiculidae) mites are carriers of Orientia tsutsugamushi, the bacterial pathogen causing scrub typhus in humans. Classification of Leptotrombidium is vital because limited mite species carry O. tsutsugamushi. Generally, Leptotrombidium at the larval stage (approximately 0.2 mm in size) are used for morphological identification. However, morphological identification is often challenging because it requires considerable skills and taxonomic expertise. In this study, we found that the full-length sequences of the mitochondrial cytochrome c oxidase subunit 1 gene varied among the significant Leptotrombidium. On the basis of these, we modified the canonical deoxyribonucleic acid (DNA) barcoding method for animals by redesigning the primer set to be suitable for Leptotrombidium. Polymerase chain reaction with the redesigned primer set drastically increased the detection sensitivity, especially against Leptotrombidium scutellare (approximately 17% increase), one of the significant mites carrying O. tsutsugamushi. Phylogenetic analysis showed that the samples morphologically classified as L. scutellare and Leptotrombidium pallidum were further split into 3 and 2 distinct subclusters respectively. The mean genetic distance (p-distance) between L. scutellare and L. pallidum was 0.2147, whereas the mean distances within each species were 0.052 and 0.044, respectively. Within L. scutellare, the mean genetic distances between the 3 subclusters were 0.1626-0.1732, whereas the distances within each subcluster were 0.003-0.017. Within L. pallidum, the mean genetic distance between the 2 subclusters was 0.1029, whereas the distances within each subcluster were 0.010-0.013. The DNA barcoding uncovered a broad genetic diversity of Leptotrombidium, especially of L. scutellare and L. pallidum, the notable species carrying O. tsutsugamushi. We conclude that the DNA barcoding using our primers enables precise and detailed classification of Leptotrombidium and implies the existence of a subgenotype in Leptotrombidium that had not been found by morphological identification.</p>","PeriodicalId":16659,"journal":{"name":"Journal of Parasitology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658875/pdf/","citationCount":"0","resultStr":"{\"title\":\"GENETIC VARIATION OF LEPTOTROMBIDIUM (ACARI: TROMBICULIDAE) MITES CARRYING ORIENTIA TSUTSUGAMUSHI, THE BACTERIAL PATHOGEN CAUSING SCRUB TYPHUS.\",\"authors\":\"Motohiko Ogawa, Nobuhiro Takada, Shinichi Noda, Mamoru Takahashi, Minenosuke Matsutani, Daisuke Kageyama, Hideki Ebihara\",\"doi\":\"10.1645/22-97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leptotrombidium (Acari: Trombiculidae) mites are carriers of Orientia tsutsugamushi, the bacterial pathogen causing scrub typhus in humans. Classification of Leptotrombidium is vital because limited mite species carry O. tsutsugamushi. Generally, Leptotrombidium at the larval stage (approximately 0.2 mm in size) are used for morphological identification. However, morphological identification is often challenging because it requires considerable skills and taxonomic expertise. In this study, we found that the full-length sequences of the mitochondrial cytochrome c oxidase subunit 1 gene varied among the significant Leptotrombidium. On the basis of these, we modified the canonical deoxyribonucleic acid (DNA) barcoding method for animals by redesigning the primer set to be suitable for Leptotrombidium. Polymerase chain reaction with the redesigned primer set drastically increased the detection sensitivity, especially against Leptotrombidium scutellare (approximately 17% increase), one of the significant mites carrying O. tsutsugamushi. Phylogenetic analysis showed that the samples morphologically classified as L. scutellare and Leptotrombidium pallidum were further split into 3 and 2 distinct subclusters respectively. The mean genetic distance (p-distance) between L. scutellare and L. pallidum was 0.2147, whereas the mean distances within each species were 0.052 and 0.044, respectively. Within L. scutellare, the mean genetic distances between the 3 subclusters were 0.1626-0.1732, whereas the distances within each subcluster were 0.003-0.017. Within L. pallidum, the mean genetic distance between the 2 subclusters was 0.1029, whereas the distances within each subcluster were 0.010-0.013. The DNA barcoding uncovered a broad genetic diversity of Leptotrombidium, especially of L. scutellare and L. pallidum, the notable species carrying O. tsutsugamushi. We conclude that the DNA barcoding using our primers enables precise and detailed classification of Leptotrombidium and implies the existence of a subgenotype in Leptotrombidium that had not been found by morphological identification.</p>\",\"PeriodicalId\":16659,\"journal\":{\"name\":\"Journal of Parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1645/22-97\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1645/22-97","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细恙螨(蜱螨属:恙螨科)是恙虫病东方体的携带者,恙虫病是引起人类恙虫病的细菌病原体。细恙螨的分类是至关重要的,因为有限的螨种携带恙虫病。一般来说,在幼虫阶段(大小约0.2毫米)的细螺旋体用于形态鉴定。然而,形态学鉴定往往是具有挑战性的,因为它需要相当的技能和分类学专业知识。在这项研究中,我们发现线粒体细胞色素c氧化酶亚基1基因的全长序列在显着的细鳞蚤中存在差异。在此基础上,我们对动物标准脱氧核糖核酸(DNA)条形码方法进行了改进,重新设计了适合细原体的引物组。重新设计的引物经聚合酶链反应后,检测灵敏度显著提高,特别是对恙虫病病原之一scutellleptotrombidium的检测灵敏度提高约17%。系统发育分析表明,形态分类为scutellare L.和Leptotrombidium pallidum .的样品分别分为3个和2个不同的亚簇。黄花L.与苍白L.的平均遗传距离(p-distance)为0.2147,种内的平均遗传距离分别为0.052和0.044。在鹅毛草中,3个亚群之间的平均遗传距离为0.1626 ~ 0.1732,而每个亚群之间的遗传距离为0.003 ~ 0.017。在苍白草中,2个亚群之间的平均遗传距离为0.1029,而每个亚群之间的遗传距离为0.010 ~ 0.013。DNA条形码揭示了细恙螨的广泛遗传多样性,特别是L. scutellare和L. pallidum,这是携带恙虫病体的主要物种。我们的结论是,使用我们的引物的DNA条形码能够精确和详细地分类细恙虫,并暗示细恙虫存在一个未被形态学鉴定发现的亚基因型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GENETIC VARIATION OF LEPTOTROMBIDIUM (ACARI: TROMBICULIDAE) MITES CARRYING ORIENTIA TSUTSUGAMUSHI, THE BACTERIAL PATHOGEN CAUSING SCRUB TYPHUS.

Leptotrombidium (Acari: Trombiculidae) mites are carriers of Orientia tsutsugamushi, the bacterial pathogen causing scrub typhus in humans. Classification of Leptotrombidium is vital because limited mite species carry O. tsutsugamushi. Generally, Leptotrombidium at the larval stage (approximately 0.2 mm in size) are used for morphological identification. However, morphological identification is often challenging because it requires considerable skills and taxonomic expertise. In this study, we found that the full-length sequences of the mitochondrial cytochrome c oxidase subunit 1 gene varied among the significant Leptotrombidium. On the basis of these, we modified the canonical deoxyribonucleic acid (DNA) barcoding method for animals by redesigning the primer set to be suitable for Leptotrombidium. Polymerase chain reaction with the redesigned primer set drastically increased the detection sensitivity, especially against Leptotrombidium scutellare (approximately 17% increase), one of the significant mites carrying O. tsutsugamushi. Phylogenetic analysis showed that the samples morphologically classified as L. scutellare and Leptotrombidium pallidum were further split into 3 and 2 distinct subclusters respectively. The mean genetic distance (p-distance) between L. scutellare and L. pallidum was 0.2147, whereas the mean distances within each species were 0.052 and 0.044, respectively. Within L. scutellare, the mean genetic distances between the 3 subclusters were 0.1626-0.1732, whereas the distances within each subcluster were 0.003-0.017. Within L. pallidum, the mean genetic distance between the 2 subclusters was 0.1029, whereas the distances within each subcluster were 0.010-0.013. The DNA barcoding uncovered a broad genetic diversity of Leptotrombidium, especially of L. scutellare and L. pallidum, the notable species carrying O. tsutsugamushi. We conclude that the DNA barcoding using our primers enables precise and detailed classification of Leptotrombidium and implies the existence of a subgenotype in Leptotrombidium that had not been found by morphological identification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parasitology
Journal of Parasitology 医学-寄生虫学
CiteScore
2.10
自引率
7.70%
发文量
60
审稿时长
2 months
期刊介绍: The Journal of Parasitology is the official peer-reviewed journal of the American Society of Parasitologists (ASP). The journal publishes original research covering helminths, protozoa, and other parasitic organisms and serves scientific professionals in microbiology, immunology, veterinary science, pathology, and public health. Journal content includes original research articles, brief research notes, announcements of the Society, and book reviews. Articles are subdivided by topic for ease of reference and range from behavior and pathogenesis to systematics and epidemiology. The journal is published continuously online with one full volume printed at the end of each year.
期刊最新文献
EVALUATION OF THE CYSTICIDAL ACTIVITY OF CHLOROCRESOL AGAINST ACANTHAMOEBA POLYPHAGA. AVIAN HAEMOSPORIDIANS IN GREATER SCAUP (AYTHYA MARILA) AND LESSER SCAUP (AYTHYA AFFINIS) FROM WISCONSIN. DEVELOPMENT OF A RAPID SNP PCR ASSAY TO DIFFERENTIATE BETWEEN EUROPEAN AND NORTH AMERICAN HAPLOTYPES OF ECHINOCOCCUS MULTILOCULARIS. PENTASTOMES IN AUSTRALIAN REPTILES AND AMPHIBIANS: A REVIEW OF THE HISTORY AND A CHECKLIST OF RECORDS. THIN AND ULTRATHIN STRUCTURE OF ENVELOPES OF STEPHANOSTOMUM BACCATUM (TREMATODA: ACANTHOCOLPIDAE) METACERCARIAE IN YELLOWFIN SOLE, LIMANDA ASPERA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1