姜黄素的化学修饰增加了其抗下咽癌的效力。

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2023-09-01 DOI:10.1080/1061186X.2023.2247581
Linlin Zhang, Lei Cheng, Zhemeng Chen, Yi Fang, Changjiang Li, Min Chen, Peijie He, Haitao Wu, Jianzhang Wu, Jian Chen
{"title":"姜黄素的化学修饰增加了其抗下咽癌的效力。","authors":"Linlin Zhang,&nbsp;Lei Cheng,&nbsp;Zhemeng Chen,&nbsp;Yi Fang,&nbsp;Changjiang Li,&nbsp;Min Chen,&nbsp;Peijie He,&nbsp;Haitao Wu,&nbsp;Jianzhang Wu,&nbsp;Jian Chen","doi":"10.1080/1061186X.2023.2247581","DOIUrl":null,"url":null,"abstract":"<p><p>Hypopharyngeal carcinoma is notorious for its poor prognosis among all head and neck cancers, posing a persistent challenge in clinical settings. The continuous hyperactivation of the NFκB signalling pathway has been noted in various cancer types, including hypopharyngeal carcinoma. In our quest to develop a novel drug that targets hypopharyngeal cancer via the NFκB pathway, we employed curcumin, a well-known lead compound, and performed chemical modifications to create a mono-carbonyl analogue called L42H17. This compound exhibited exceptional stability and displayed an enhanced binding affinity to myeloid differentiation protein 2 (MD2). Consistent with expectations, L42H17 demonstrated the ability to inhibit TNF-α-induced phosphorylation of inhibitor of κB (IκB) kinase (IKK), prevent IκB degradation, and subsequently impede NFκB-p65 nuclear translocation in hypopharyngeal cancer cells. Additionally, L42H17 exhibited a remarkable capacity to induce cell cycle arrest at the G2-M phase by inactivating the cdc2-cyclin B1 complex. Moreover, it facilitated cell apoptosis by reducing Bcl-2 levels and augmenting the expression of cle-PARP and cle-caspase3. Importantly, we observed a significant enhancement in the anti-cancer efficacy of L42H17 in a patient-derived tumour xenograft (PDTX) model of hypopharyngeal carcinoma. In conclusion, our findings strongly suggest that L42H17 holds promise as a potential candidate drug for the treatment of hypopharyngeal carcinoma in the future.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical modification of curcumin increases its potency against hypopharyngeal carcinoma.\",\"authors\":\"Linlin Zhang,&nbsp;Lei Cheng,&nbsp;Zhemeng Chen,&nbsp;Yi Fang,&nbsp;Changjiang Li,&nbsp;Min Chen,&nbsp;Peijie He,&nbsp;Haitao Wu,&nbsp;Jianzhang Wu,&nbsp;Jian Chen\",\"doi\":\"10.1080/1061186X.2023.2247581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypopharyngeal carcinoma is notorious for its poor prognosis among all head and neck cancers, posing a persistent challenge in clinical settings. The continuous hyperactivation of the NFκB signalling pathway has been noted in various cancer types, including hypopharyngeal carcinoma. In our quest to develop a novel drug that targets hypopharyngeal cancer via the NFκB pathway, we employed curcumin, a well-known lead compound, and performed chemical modifications to create a mono-carbonyl analogue called L42H17. This compound exhibited exceptional stability and displayed an enhanced binding affinity to myeloid differentiation protein 2 (MD2). Consistent with expectations, L42H17 demonstrated the ability to inhibit TNF-α-induced phosphorylation of inhibitor of κB (IκB) kinase (IKK), prevent IκB degradation, and subsequently impede NFκB-p65 nuclear translocation in hypopharyngeal cancer cells. Additionally, L42H17 exhibited a remarkable capacity to induce cell cycle arrest at the G2-M phase by inactivating the cdc2-cyclin B1 complex. Moreover, it facilitated cell apoptosis by reducing Bcl-2 levels and augmenting the expression of cle-PARP and cle-caspase3. Importantly, we observed a significant enhancement in the anti-cancer efficacy of L42H17 in a patient-derived tumour xenograft (PDTX) model of hypopharyngeal carcinoma. In conclusion, our findings strongly suggest that L42H17 holds promise as a potential candidate drug for the treatment of hypopharyngeal carcinoma in the future.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2023.2247581\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2023.2247581","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

下咽癌是臭名昭著的预后不良的所有头颈部癌症,提出了持续的挑战,在临床设置。NFκB信号通路的持续过度激活已在包括下咽癌在内的各种癌症类型中被注意到。在我们寻求开发一种通过NFκB途径靶向下咽癌的新药的过程中,我们使用了姜黄素,一种众所周知的先导化合物,并进行了化学修饰,创造了一种名为L42H17的单羰基类似物。该化合物表现出优异的稳定性,并显示出与髓样分化蛋白2 (MD2)增强的结合亲和力。与预期一致,L42H17能够抑制TNF-α-诱导的κB (i - κB)激酶抑制剂(IKK)的磷酸化,阻止i - κB降解,并随后阻碍nf - κB-p65在下咽癌细胞中的核易位。此外,L42H17通过灭活cdc2-cyclin B1复合物,表现出在G2-M期诱导细胞周期阻滞的显著能力。此外,它通过降低Bcl-2水平,增加cle-PARP和cle-caspase3的表达,促进细胞凋亡。重要的是,我们观察到L42H17在患者源性肿瘤异种移植(PDTX)下咽癌模型中的抗癌功效显著增强。总之,我们的研究结果强烈表明L42H17有望成为未来治疗下咽癌的潜在候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical modification of curcumin increases its potency against hypopharyngeal carcinoma.

Hypopharyngeal carcinoma is notorious for its poor prognosis among all head and neck cancers, posing a persistent challenge in clinical settings. The continuous hyperactivation of the NFκB signalling pathway has been noted in various cancer types, including hypopharyngeal carcinoma. In our quest to develop a novel drug that targets hypopharyngeal cancer via the NFκB pathway, we employed curcumin, a well-known lead compound, and performed chemical modifications to create a mono-carbonyl analogue called L42H17. This compound exhibited exceptional stability and displayed an enhanced binding affinity to myeloid differentiation protein 2 (MD2). Consistent with expectations, L42H17 demonstrated the ability to inhibit TNF-α-induced phosphorylation of inhibitor of κB (IκB) kinase (IKK), prevent IκB degradation, and subsequently impede NFκB-p65 nuclear translocation in hypopharyngeal cancer cells. Additionally, L42H17 exhibited a remarkable capacity to induce cell cycle arrest at the G2-M phase by inactivating the cdc2-cyclin B1 complex. Moreover, it facilitated cell apoptosis by reducing Bcl-2 levels and augmenting the expression of cle-PARP and cle-caspase3. Importantly, we observed a significant enhancement in the anti-cancer efficacy of L42H17 in a patient-derived tumour xenograft (PDTX) model of hypopharyngeal carcinoma. In conclusion, our findings strongly suggest that L42H17 holds promise as a potential candidate drug for the treatment of hypopharyngeal carcinoma in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Machine learning for skin permeability prediction: random forest and XG boost regression. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. Clinical evaluation of liposome-based gel formulation containing glycolic acid for the treatment of photodamaged skin. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1