{"title":"DCAlign v1.0:使用协同进化模型和知情先验对生物序列进行对齐。","authors":"Anna Paola Muntoni, Andrea Pagnani","doi":"10.1093/bioinformatics/btad537","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions.</p><p><strong>Availability and implementation: </strong>DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491954/pdf/","citationCount":"0","resultStr":"{\"title\":\"DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors.\",\"authors\":\"Anna Paola Muntoni, Andrea Pagnani\",\"doi\":\"10.1093/bioinformatics/btad537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions.</p><p><strong>Availability and implementation: </strong>DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad537\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad537","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors.
Summary: DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions.
Availability and implementation: DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.