{"title":"用RIVET追踪和培养假定的SARS-CoV-2重组病毒。","authors":"Kyle Smith, Cheng Ye, Yatish Turakhia","doi":"10.1093/bioinformatics/btad538","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation.</p><p><strong>Results: </strong>We present RIVET-a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants and organize the relevant information in a web interface that would help greatly accelerate the process of identifying and tracking recombinants.</p><p><strong>Availability and implementation: </strong>RIVET-based web interface displaying the most updated analysis of potential SARS-CoV-2 recombinants is available at https://rivet.ucsd.edu/. RIVET's frontend and backend code is freely available under the MIT license at https://github.com/TurakhiaLab/rivet and the documentation for RIVET is available at https://turakhialab.github.io/rivet/. The inputs necessary for running RIVET's backend workflow for SARS-CoV-2 are available through a public database maintained and updated daily by UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/).</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493179/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tracking and curating putative SARS-CoV-2 recombinants with RIVET.\",\"authors\":\"Kyle Smith, Cheng Ye, Yatish Turakhia\",\"doi\":\"10.1093/bioinformatics/btad538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation.</p><p><strong>Results: </strong>We present RIVET-a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants and organize the relevant information in a web interface that would help greatly accelerate the process of identifying and tracking recombinants.</p><p><strong>Availability and implementation: </strong>RIVET-based web interface displaying the most updated analysis of potential SARS-CoV-2 recombinants is available at https://rivet.ucsd.edu/. RIVET's frontend and backend code is freely available under the MIT license at https://github.com/TurakhiaLab/rivet and the documentation for RIVET is available at https://turakhialab.github.io/rivet/. The inputs necessary for running RIVET's backend workflow for SARS-CoV-2 are available through a public database maintained and updated daily by UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/).</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493179/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad538\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad538","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Tracking and curating putative SARS-CoV-2 recombinants with RIVET.
Motivation: Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation.
Results: We present RIVET-a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants and organize the relevant information in a web interface that would help greatly accelerate the process of identifying and tracking recombinants.
Availability and implementation: RIVET-based web interface displaying the most updated analysis of potential SARS-CoV-2 recombinants is available at https://rivet.ucsd.edu/. RIVET's frontend and backend code is freely available under the MIT license at https://github.com/TurakhiaLab/rivet and the documentation for RIVET is available at https://turakhialab.github.io/rivet/. The inputs necessary for running RIVET's backend workflow for SARS-CoV-2 are available through a public database maintained and updated daily by UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/).
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.