【高效液相色谱-蒸发光散射检测法同时测定固体食品中的六种罕见糖】。

IF 1.2 4区 化学 Q4 CHEMISTRY, ANALYTICAL 色谱 Pub Date : 2023-09-01 DOI:10.3724/SP.J.1123.2023.02014
Yu Liu, Jia-Li Xing, Jian Shen, Xiao-Li Bi, Ling-Yan Mao, Xiao-Rong Xu, Shu-Fen Zhang, Yong-Jiang Lou, Xi Wu, Ying-Hua Mu
{"title":"【高效液相色谱-蒸发光散射检测法同时测定固体食品中的六种罕见糖】。","authors":"Yu Liu,&nbsp;Jia-Li Xing,&nbsp;Jian Shen,&nbsp;Xiao-Li Bi,&nbsp;Ling-Yan Mao,&nbsp;Xiao-Rong Xu,&nbsp;Shu-Fen Zhang,&nbsp;Yong-Jiang Lou,&nbsp;Xi Wu,&nbsp;Ying-Hua Mu","doi":"10.3724/SP.J.1123.2023.02014","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive sugar consumption is associated with metabolic health problems. Rare sugars are gradually being used as substitutes for sugar, and their consumption is increasing daily, raising food-safety issues such as false advertising, adulteration, and overdosing. The determination of rare-sugar compounds has attracted considerable attention in recent years. However, no standard method for the simultaneous determination of six rare sugars (allulose, tagatose, trehalose, isomaltulose, erythritol, and mannitol) in solid foods is available. Therefore, establishing a suitable analytical method for these sugars is necessary. In this study, high performance liquid chromatography coupled with evaporative light-scattering detection was used to determine rare sugars in solid foods. The optimum chromatographic and detector conditions were determined by evaluating the instrument parameters. Analysis was carried out on a Zorbax Original NH<sub>2</sub> column (250 mm×4.6 mm, 5 μm) via flow-rate gradient elution (0-15 min, 1.0 mL/min; 15-18 min, 1.0-2.0 mL/min; 18-25 min, 2.0 mL/min) with acetonitrile-water (80∶20, v/v) as the mobile phase. Sharp and symmetric chromatographic peaks were obtained under these conditions. The resolutions for all the six rare sugars were greater than 1.5. Optimization of the evaporative light-scattering detector was extremely important to the responses of the rare-sugar compounds. The two most significant parameters were the nebulizer carrier gas flow rate and drift tube temperature. The detection system was operated under the following conditions: the drift tube temperature was set to 50 ℃, the nebulizer carrier gas was high-purity nitrogen, the carrier gas flow rate was 1.0 mL/min, the nitrogen pressure was regulated to 275.79 kPa, and the gain factor was set to 3. The sample was extracted with 25 mL of water, shaken and vortexed for 10 min, purified with 200 μL of zinc acetate solution and 200 μL of potassium ferricyanide solution, and centrifuged at 4500 r/min for 10 min. Next, 1 mL of the supernatant was passed through a 0.22 μm aqueous-phase filter membrane, and the filtrate obtained was analyzed using the evaporative light-scattering detector. The six rare sugars were quantitatively analyzed using the external standard method and showed good linearity with coefficients of determination (<i>R</i><sup>2</sup>) greater than 0.9985. The limits of detection and quantification were 0.020-0.60 and 0.60-1.8 g/100 g, respectively. In addition, when blank solid food samples were spiked with the analytes at three levels, the average recoveries of the six rare sugars were 92.6%-103.2%, with relative standard deviations (RSDs) of 0.7%-4.4%. An RSD of <5% indicated that the method had good precision. Interference experiments were performed to determine whether the sugars and artificial sweeteners commonly found in solid foods affected the targets. The method established in this study was used to analyze the contents of the six rare sugars in actual solid food samples. The experimental results showed various levels of rare glycoconjugates in different solid foods. Moreover, the actual compositions and labeled of rare glycoconjugates in the solid foods were generally consistent. The proposed method features simple operation, rapid results, high sensitivity, and good reproducibility; thus, it meets the requirements for the detection of the six rare sugars in solid foods. It also provides technical support for the development of methodological standards and detection limits for rare sugars in Chinese foods. The results of this study are of great relevance for the daily monitoring of the levels of the six rare sugars in solid foods.</p>","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 9","pages":"781-788"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507526/pdf/cjc-41-09-781.pdf","citationCount":"0","resultStr":"{\"title\":\"[Simultaneous determination of six rare sugars in solid foods by high performance liquid chromatography-evaporative light-scattering detection].\",\"authors\":\"Yu Liu,&nbsp;Jia-Li Xing,&nbsp;Jian Shen,&nbsp;Xiao-Li Bi,&nbsp;Ling-Yan Mao,&nbsp;Xiao-Rong Xu,&nbsp;Shu-Fen Zhang,&nbsp;Yong-Jiang Lou,&nbsp;Xi Wu,&nbsp;Ying-Hua Mu\",\"doi\":\"10.3724/SP.J.1123.2023.02014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Excessive sugar consumption is associated with metabolic health problems. Rare sugars are gradually being used as substitutes for sugar, and their consumption is increasing daily, raising food-safety issues such as false advertising, adulteration, and overdosing. The determination of rare-sugar compounds has attracted considerable attention in recent years. However, no standard method for the simultaneous determination of six rare sugars (allulose, tagatose, trehalose, isomaltulose, erythritol, and mannitol) in solid foods is available. Therefore, establishing a suitable analytical method for these sugars is necessary. In this study, high performance liquid chromatography coupled with evaporative light-scattering detection was used to determine rare sugars in solid foods. The optimum chromatographic and detector conditions were determined by evaluating the instrument parameters. Analysis was carried out on a Zorbax Original NH<sub>2</sub> column (250 mm×4.6 mm, 5 μm) via flow-rate gradient elution (0-15 min, 1.0 mL/min; 15-18 min, 1.0-2.0 mL/min; 18-25 min, 2.0 mL/min) with acetonitrile-water (80∶20, v/v) as the mobile phase. Sharp and symmetric chromatographic peaks were obtained under these conditions. The resolutions for all the six rare sugars were greater than 1.5. Optimization of the evaporative light-scattering detector was extremely important to the responses of the rare-sugar compounds. The two most significant parameters were the nebulizer carrier gas flow rate and drift tube temperature. The detection system was operated under the following conditions: the drift tube temperature was set to 50 ℃, the nebulizer carrier gas was high-purity nitrogen, the carrier gas flow rate was 1.0 mL/min, the nitrogen pressure was regulated to 275.79 kPa, and the gain factor was set to 3. The sample was extracted with 25 mL of water, shaken and vortexed for 10 min, purified with 200 μL of zinc acetate solution and 200 μL of potassium ferricyanide solution, and centrifuged at 4500 r/min for 10 min. Next, 1 mL of the supernatant was passed through a 0.22 μm aqueous-phase filter membrane, and the filtrate obtained was analyzed using the evaporative light-scattering detector. The six rare sugars were quantitatively analyzed using the external standard method and showed good linearity with coefficients of determination (<i>R</i><sup>2</sup>) greater than 0.9985. The limits of detection and quantification were 0.020-0.60 and 0.60-1.8 g/100 g, respectively. In addition, when blank solid food samples were spiked with the analytes at three levels, the average recoveries of the six rare sugars were 92.6%-103.2%, with relative standard deviations (RSDs) of 0.7%-4.4%. An RSD of <5% indicated that the method had good precision. Interference experiments were performed to determine whether the sugars and artificial sweeteners commonly found in solid foods affected the targets. The method established in this study was used to analyze the contents of the six rare sugars in actual solid food samples. The experimental results showed various levels of rare glycoconjugates in different solid foods. Moreover, the actual compositions and labeled of rare glycoconjugates in the solid foods were generally consistent. The proposed method features simple operation, rapid results, high sensitivity, and good reproducibility; thus, it meets the requirements for the detection of the six rare sugars in solid foods. It also provides technical support for the development of methodological standards and detection limits for rare sugars in Chinese foods. The results of this study are of great relevance for the daily monitoring of the levels of the six rare sugars in solid foods.</p>\",\"PeriodicalId\":9864,\"journal\":{\"name\":\"色谱\",\"volume\":\"41 9\",\"pages\":\"781-788\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507526/pdf/cjc-41-09-781.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"色谱\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1123.2023.02014\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"色谱","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2023.02014","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

过量摄入糖与代谢健康问题有关。稀有糖正逐渐被用作糖的替代品,其消费量每天都在增加,这引发了虚假广告、掺假和过量使用等食品安全问题。近年来,稀有糖化合物的测定引起了人们的极大关注。然而,目前还没有同时测定固体食品中六种罕见糖(allulose、tagatose、海藻糖、异麦芽酮糖、赤藓糖醇和甘露醇)的标准方法。因此,有必要为这些糖建立一种合适的分析方法。本研究采用高效液相色谱-蒸发光散射检测相结合的方法测定固体食品中的稀有糖。通过对仪器参数的评估,确定了最佳色谱和检测器条件。在Zorbax Original NH2柱(250 mm×4.6 mm,5μm)上,以乙腈-水(80∶20,v/v)为流动相,以流速梯度洗脱(0-15 min,1.0 mL/min;15-18 min,1.0-2.0 mL/min;18-25 min,2.0 mL/min)。在这些条件下获得了尖锐且对称的色谱峰。所有六种稀有糖的分辨率都大于1.5。蒸发光散射检测器的优化对稀有糖化合物的响应非常重要。两个最重要的参数是喷雾器载气流速和漂移管温度。检测系统在以下条件下运行:漂移管温度设置为50℃,喷雾器载气为高纯度氮气,载气流速为1.0mL/min,氮气压力调节至275.79kPa,增益因子设置为3。样品用25mL水提取,振荡和涡旋10分钟,用200μL乙酸锌溶液和200μL铁氰化钾溶液纯化,并以4500r/min离心10分钟。接下来,将1mL上清液通过0.22μm水相滤膜,使用蒸发光散射检测器分析获得的滤液。使用外标法对六种稀有糖进行了定量分析,并显示出良好的线性,测定系数(R2)大于0.9985。检测限和定量限分别为0.020-0.60和0.60-1.8g/100g。此外,当空白固体食品样品中加入三种水平的分析物时,六种稀有糖的平均回收率为92.6%至103.2%,相对标准偏差为0.7%至4.4%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Simultaneous determination of six rare sugars in solid foods by high performance liquid chromatography-evaporative light-scattering detection].

Excessive sugar consumption is associated with metabolic health problems. Rare sugars are gradually being used as substitutes for sugar, and their consumption is increasing daily, raising food-safety issues such as false advertising, adulteration, and overdosing. The determination of rare-sugar compounds has attracted considerable attention in recent years. However, no standard method for the simultaneous determination of six rare sugars (allulose, tagatose, trehalose, isomaltulose, erythritol, and mannitol) in solid foods is available. Therefore, establishing a suitable analytical method for these sugars is necessary. In this study, high performance liquid chromatography coupled with evaporative light-scattering detection was used to determine rare sugars in solid foods. The optimum chromatographic and detector conditions were determined by evaluating the instrument parameters. Analysis was carried out on a Zorbax Original NH2 column (250 mm×4.6 mm, 5 μm) via flow-rate gradient elution (0-15 min, 1.0 mL/min; 15-18 min, 1.0-2.0 mL/min; 18-25 min, 2.0 mL/min) with acetonitrile-water (80∶20, v/v) as the mobile phase. Sharp and symmetric chromatographic peaks were obtained under these conditions. The resolutions for all the six rare sugars were greater than 1.5. Optimization of the evaporative light-scattering detector was extremely important to the responses of the rare-sugar compounds. The two most significant parameters were the nebulizer carrier gas flow rate and drift tube temperature. The detection system was operated under the following conditions: the drift tube temperature was set to 50 ℃, the nebulizer carrier gas was high-purity nitrogen, the carrier gas flow rate was 1.0 mL/min, the nitrogen pressure was regulated to 275.79 kPa, and the gain factor was set to 3. The sample was extracted with 25 mL of water, shaken and vortexed for 10 min, purified with 200 μL of zinc acetate solution and 200 μL of potassium ferricyanide solution, and centrifuged at 4500 r/min for 10 min. Next, 1 mL of the supernatant was passed through a 0.22 μm aqueous-phase filter membrane, and the filtrate obtained was analyzed using the evaporative light-scattering detector. The six rare sugars were quantitatively analyzed using the external standard method and showed good linearity with coefficients of determination (R2) greater than 0.9985. The limits of detection and quantification were 0.020-0.60 and 0.60-1.8 g/100 g, respectively. In addition, when blank solid food samples were spiked with the analytes at three levels, the average recoveries of the six rare sugars were 92.6%-103.2%, with relative standard deviations (RSDs) of 0.7%-4.4%. An RSD of <5% indicated that the method had good precision. Interference experiments were performed to determine whether the sugars and artificial sweeteners commonly found in solid foods affected the targets. The method established in this study was used to analyze the contents of the six rare sugars in actual solid food samples. The experimental results showed various levels of rare glycoconjugates in different solid foods. Moreover, the actual compositions and labeled of rare glycoconjugates in the solid foods were generally consistent. The proposed method features simple operation, rapid results, high sensitivity, and good reproducibility; thus, it meets the requirements for the detection of the six rare sugars in solid foods. It also provides technical support for the development of methodological standards and detection limits for rare sugars in Chinese foods. The results of this study are of great relevance for the daily monitoring of the levels of the six rare sugars in solid foods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
色谱
色谱 CHEMISTRY, ANALYTICAL-
CiteScore
1.30
自引率
42.90%
发文量
7198
期刊介绍: "Chinese Journal of Chromatography" mainly reports the basic research results of chromatography, important application results of chromatography and its interdisciplinary subjects and their progress, including the application of new methods, new technologies, and new instruments in various fields, the research and development of chromatography instruments and components, instrument analysis teaching research, etc. It is suitable for researchers engaged in chromatography basic and application technology research in scientific research institutes, master and doctoral students in chromatography and related disciplines, grassroots researchers in the field of analysis and testing, and relevant personnel in chromatography instrument development and operation units. The journal has columns such as special planning, focus, perspective, research express, research paper, monograph and review, micro review, technology and application, and teaching research.
期刊最新文献
[Off-line comprehensive two-dimensional countercurrent chromatography-liquid chromatography separation of Curcuma volatile oil]. [Advances in synthesis methods and applications of microporous organic networks for sample preparation]. [Application progress of on-line sample preparation techniques coupled with liquid chromatography-mass spectrometry system in the detection of food hazards]. [Chiral capillary gas chromatography for the separation of the enantiomers of 4-chloromethyl-2,2-dimethyl-1,3-dioxolane]. [Determination of 14 β-agonists in animal meat by ultra high performance liquid chromatography-tandem mass spectrometry].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1