{"title":"用机器学习系统预测经皮肾穿刺取石术无结石状态。","authors":"Rami AlAzab, Owais Ghammaz, Nabil Ardah, Ayah Al-Bzour, Layan Zeidat, Zahraa Mawali, Yaman B Ahmed, Tha'er Abdulkareem Alguzo, Azhar Mohanad Al-Alwani, Mahmoud Samara","doi":"10.2147/IJNRD.S427404","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The study aimed to create a machine learning model (MLM) to predict the stone-free status (SFS) of patients undergoing percutaneous nephrolithotomy (PCNL) and compare its performance to the S.T.O.N.E. and Guy's stone scores.</p><p><strong>Patients and methods: </strong>This is a retrospective study that included 320 PCNL patients. Pre-operative and post-operative variables were extracted and entered into three MLMs: RFC, SVM, and XGBoost. The methods used to assess the performance of each were mean bootstrap estimate, 10-fold cross-validation, classification report, and AUC. Each model was externally validated and evaluated by mean bootstrap estimate with CI, classification report, and AUC.</p><p><strong>Results: </strong>Out of the 320 patients who underwent PCNL, the SFS was found to be 69.4%. The RFC mean bootstrap estimate was 0.75 and 95% CI: [0.65-0.85], 10-fold cross-validation of 0.744, an accuracy of 0.74, and AUC of 0.761. The XGBoost results were 0.74 [0.63-0.85], 0.759, 0.72, and 0.769, respectively. The SVM results were 0.70 [0.60-0.79], 0.725, 0.74, and 0.751, respectively. The AUC of Guy's stone score and the S.T.O.N.E. score were 0.666 and 0.71, respectively. The RFC external validation set had a mean bootstrap estimate of 0.87 and 95% CI: [0.81-0.92], an accuracy of 0.70, and an AUC of 0.795, While the XGBoost results were 0.84 [0.78-0.91], 0.74, and 0.84, respectively. The SVM results were 0.86 [0.80-0.91], 0.79, and 0.858, respectively.</p><p><strong>Conclusion: </strong>MLMs can be used with high accuracy in predicting SFS for patients undergoing PCNL. MLMs we utilized predicted the SFS with AUCs superior to those of GSS and S.T.O.N.E scores.</p>","PeriodicalId":14181,"journal":{"name":"International Journal of Nephrology and Renovascular Disease","volume":"16 ","pages":"197-206"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/ae/ijnrd-16-197.PMC10503523.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting the Stone-Free Status of Percutaneous Nephrolithotomy with the Machine Learning System.\",\"authors\":\"Rami AlAzab, Owais Ghammaz, Nabil Ardah, Ayah Al-Bzour, Layan Zeidat, Zahraa Mawali, Yaman B Ahmed, Tha'er Abdulkareem Alguzo, Azhar Mohanad Al-Alwani, Mahmoud Samara\",\"doi\":\"10.2147/IJNRD.S427404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The study aimed to create a machine learning model (MLM) to predict the stone-free status (SFS) of patients undergoing percutaneous nephrolithotomy (PCNL) and compare its performance to the S.T.O.N.E. and Guy's stone scores.</p><p><strong>Patients and methods: </strong>This is a retrospective study that included 320 PCNL patients. Pre-operative and post-operative variables were extracted and entered into three MLMs: RFC, SVM, and XGBoost. The methods used to assess the performance of each were mean bootstrap estimate, 10-fold cross-validation, classification report, and AUC. Each model was externally validated and evaluated by mean bootstrap estimate with CI, classification report, and AUC.</p><p><strong>Results: </strong>Out of the 320 patients who underwent PCNL, the SFS was found to be 69.4%. The RFC mean bootstrap estimate was 0.75 and 95% CI: [0.65-0.85], 10-fold cross-validation of 0.744, an accuracy of 0.74, and AUC of 0.761. The XGBoost results were 0.74 [0.63-0.85], 0.759, 0.72, and 0.769, respectively. The SVM results were 0.70 [0.60-0.79], 0.725, 0.74, and 0.751, respectively. The AUC of Guy's stone score and the S.T.O.N.E. score were 0.666 and 0.71, respectively. The RFC external validation set had a mean bootstrap estimate of 0.87 and 95% CI: [0.81-0.92], an accuracy of 0.70, and an AUC of 0.795, While the XGBoost results were 0.84 [0.78-0.91], 0.74, and 0.84, respectively. The SVM results were 0.86 [0.80-0.91], 0.79, and 0.858, respectively.</p><p><strong>Conclusion: </strong>MLMs can be used with high accuracy in predicting SFS for patients undergoing PCNL. MLMs we utilized predicted the SFS with AUCs superior to those of GSS and S.T.O.N.E scores.</p>\",\"PeriodicalId\":14181,\"journal\":{\"name\":\"International Journal of Nephrology and Renovascular Disease\",\"volume\":\"16 \",\"pages\":\"197-206\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/ae/ijnrd-16-197.PMC10503523.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nephrology and Renovascular Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/IJNRD.S427404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nephrology and Renovascular Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/IJNRD.S427404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Predicting the Stone-Free Status of Percutaneous Nephrolithotomy with the Machine Learning System.
Purpose: The study aimed to create a machine learning model (MLM) to predict the stone-free status (SFS) of patients undergoing percutaneous nephrolithotomy (PCNL) and compare its performance to the S.T.O.N.E. and Guy's stone scores.
Patients and methods: This is a retrospective study that included 320 PCNL patients. Pre-operative and post-operative variables were extracted and entered into three MLMs: RFC, SVM, and XGBoost. The methods used to assess the performance of each were mean bootstrap estimate, 10-fold cross-validation, classification report, and AUC. Each model was externally validated and evaluated by mean bootstrap estimate with CI, classification report, and AUC.
Results: Out of the 320 patients who underwent PCNL, the SFS was found to be 69.4%. The RFC mean bootstrap estimate was 0.75 and 95% CI: [0.65-0.85], 10-fold cross-validation of 0.744, an accuracy of 0.74, and AUC of 0.761. The XGBoost results were 0.74 [0.63-0.85], 0.759, 0.72, and 0.769, respectively. The SVM results were 0.70 [0.60-0.79], 0.725, 0.74, and 0.751, respectively. The AUC of Guy's stone score and the S.T.O.N.E. score were 0.666 and 0.71, respectively. The RFC external validation set had a mean bootstrap estimate of 0.87 and 95% CI: [0.81-0.92], an accuracy of 0.70, and an AUC of 0.795, While the XGBoost results were 0.84 [0.78-0.91], 0.74, and 0.84, respectively. The SVM results were 0.86 [0.80-0.91], 0.79, and 0.858, respectively.
Conclusion: MLMs can be used with high accuracy in predicting SFS for patients undergoing PCNL. MLMs we utilized predicted the SFS with AUCs superior to those of GSS and S.T.O.N.E scores.
期刊介绍:
International Journal of Nephrology and Renovascular Disease is an international, peer-reviewed, open-access journal focusing on the pathophysiology of the kidney and vascular supply. Epidemiology, screening, diagnosis, and treatment interventions are covered as well as basic science, biochemical and immunological studies. In particular, emphasis will be given to: -Chronic kidney disease- Complications of renovascular disease- Imaging techniques- Renal hypertension- Renal cancer- Treatment including pharmacological and transplantation- Dialysis and treatment of complications of dialysis and renal disease- Quality of Life- Patient satisfaction and preference- Health economic evaluations. The journal welcomes submitted papers covering original research, basic science, clinical studies, reviews & evaluations, guidelines, expert opinion and commentary, case reports and extended reports. The main focus of the journal will be to publish research and clinical results in humans but preclinical, animal and in vitro studies will be published where they shed light on disease processes and potential new therapies and interventions.