变化自适应测量对项目参数估计误差的鲁棒性。

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Educational and Psychological Measurement Pub Date : 2022-08-01 DOI:10.1177/00131644211033902
Allison W Cooperman, David J Weiss, Chun Wang
{"title":"变化自适应测量对项目参数估计误差的鲁棒性。","authors":"Allison W Cooperman,&nbsp;David J Weiss,&nbsp;Chun Wang","doi":"10.1177/00131644211033902","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive measurement of change (AMC) is a psychometric method for measuring intra-individual change on one or more latent traits across testing occasions. Three hypothesis tests-a <i>Z</i> test, likelihood ratio test, and score ratio index-have demonstrated desirable statistical properties in this context, including low false positive rates and high true positive rates. However, the extant AMC research has assumed that the item parameter values in the simulated item banks were devoid of estimation error. This assumption is unrealistic for applied testing settings, where item parameters are estimated from a calibration sample before test administration. Using Monte Carlo simulation, this study evaluated the robustness of the common AMC hypothesis tests to the presence of item parameter estimation error when measuring omnibus change across four testing occasions. Results indicated that item parameter estimation error had at most a small effect on false positive rates and latent trait change recovery, and these effects were largely explained by the computerized adaptive testing item bank information functions. Differences in AMC performance as a function of item parameter estimation error and choice of hypothesis test were generally limited to simulees with particularly low or high latent trait values, where the item bank provided relatively lower information. These simulations highlight how AMC can accurately measure intra-individual change in the presence of item parameter estimation error when paired with an informative item bank. Limitations and future directions for AMC research are discussed.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"82 4","pages":"643-677"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228691/pdf/10.1177_00131644211033902.pdf","citationCount":"0","resultStr":"{\"title\":\"Robustness of Adaptive Measurement of Change to Item Parameter Estimation Error.\",\"authors\":\"Allison W Cooperman,&nbsp;David J Weiss,&nbsp;Chun Wang\",\"doi\":\"10.1177/00131644211033902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adaptive measurement of change (AMC) is a psychometric method for measuring intra-individual change on one or more latent traits across testing occasions. Three hypothesis tests-a <i>Z</i> test, likelihood ratio test, and score ratio index-have demonstrated desirable statistical properties in this context, including low false positive rates and high true positive rates. However, the extant AMC research has assumed that the item parameter values in the simulated item banks were devoid of estimation error. This assumption is unrealistic for applied testing settings, where item parameters are estimated from a calibration sample before test administration. Using Monte Carlo simulation, this study evaluated the robustness of the common AMC hypothesis tests to the presence of item parameter estimation error when measuring omnibus change across four testing occasions. Results indicated that item parameter estimation error had at most a small effect on false positive rates and latent trait change recovery, and these effects were largely explained by the computerized adaptive testing item bank information functions. Differences in AMC performance as a function of item parameter estimation error and choice of hypothesis test were generally limited to simulees with particularly low or high latent trait values, where the item bank provided relatively lower information. These simulations highlight how AMC can accurately measure intra-individual change in the presence of item parameter estimation error when paired with an informative item bank. Limitations and future directions for AMC research are discussed.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"82 4\",\"pages\":\"643-677\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228691/pdf/10.1177_00131644211033902.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644211033902\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211033902","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自适应变化测量(AMC)是一种心理测量方法,用于测量个体内部在测试场合中一个或多个潜在特征的变化。三个假设检验——Z检验、似然比检验和得分比指数——在这种情况下显示了理想的统计特性,包括低假阳性率和高真阳性率。然而,现有的AMC研究都假设模拟物题库中的物项参数值不存在估计误差。这个假设对于应用的测试设置是不现实的,因为项目参数是在测试管理之前从校准样本估计的。利用蒙特卡罗模拟,本研究评估了在测量综合变化时,常见的AMC假设检验对项目参数估计误差存在的稳健性。结果表明,项目参数估计误差对误阳性率和潜在性状变化恢复率的影响很小,这种影响在很大程度上可以通过计算机化自适应测试题库信息功能来解释。项目参数估计误差和假设检验选择在AMC表现上的差异通常局限于具有特别低或特别高的潜在特征值的模拟,其中项目库提供的信息相对较少。这些模拟强调了当与信息库配对时,在存在项目参数估计误差的情况下,AMC如何准确地测量个体内部变化。讨论了AMC研究的局限性和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robustness of Adaptive Measurement of Change to Item Parameter Estimation Error.

Adaptive measurement of change (AMC) is a psychometric method for measuring intra-individual change on one or more latent traits across testing occasions. Three hypothesis tests-a Z test, likelihood ratio test, and score ratio index-have demonstrated desirable statistical properties in this context, including low false positive rates and high true positive rates. However, the extant AMC research has assumed that the item parameter values in the simulated item banks were devoid of estimation error. This assumption is unrealistic for applied testing settings, where item parameters are estimated from a calibration sample before test administration. Using Monte Carlo simulation, this study evaluated the robustness of the common AMC hypothesis tests to the presence of item parameter estimation error when measuring omnibus change across four testing occasions. Results indicated that item parameter estimation error had at most a small effect on false positive rates and latent trait change recovery, and these effects were largely explained by the computerized adaptive testing item bank information functions. Differences in AMC performance as a function of item parameter estimation error and choice of hypothesis test were generally limited to simulees with particularly low or high latent trait values, where the item bank provided relatively lower information. These simulations highlight how AMC can accurately measure intra-individual change in the presence of item parameter estimation error when paired with an informative item bank. Limitations and future directions for AMC research are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
期刊最新文献
Discriminant Validity of Interval Response Formats: Investigating the Dimensional Structure of Interval Widths. Novick Meets Bayes: Improving the Assessment of Individual Students in Educational Practice and Research by Capitalizing on Assessors' Prior Beliefs. Differential Item Functioning Effect Size Use for Validity Information. Optimal Number of Replications for Obtaining Stable Dynamic Fit Index Cutoffs. Invariance: What Does Measurement Invariance Allow Us to Claim?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1