{"title":"期望线性时间中抽象Voronoi图的删除及相关问题。","authors":"Kolja Junginger, Evanthia Papadopoulou","doi":"10.1007/s00454-022-00463-z","DOIUrl":null,"url":null,"abstract":"<p><p>Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order-<math><mrow><mo>(</mo><mi>k</mi><mspace></mspace><mo>+</mo><mspace></mspace><mn>1</mn><mo>)</mo></mrow></math> subdivision within an order-<i>k</i> Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 4","pages":"1040-1078"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169906/pdf/","citationCount":"4","resultStr":"{\"title\":\"Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems.\",\"authors\":\"Kolja Junginger, Evanthia Papadopoulou\",\"doi\":\"10.1007/s00454-022-00463-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order-<math><mrow><mo>(</mo><mi>k</mi><mspace></mspace><mo>+</mo><mspace></mspace><mn>1</mn><mo>)</mo></mrow></math> subdivision within an order-<i>k</i> Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"69 4\",\"pages\":\"1040-1078\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169906/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00463-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00463-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems.
Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order- subdivision within an order-k Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.