Shefali Saini, Jennifer L Bartels, Jean-Pierre K Appiah, Jason H Rider, Nicholas Baumhover, Michael K Schultz, Suzanne E Lapi
{"title":"电镀铊靶生产高纯203Pb的优化方法。","authors":"Shefali Saini, Jennifer L Bartels, Jean-Pierre K Appiah, Jason H Rider, Nicholas Baumhover, Michael K Schultz, Suzanne E Lapi","doi":"10.2967/jnumed.123.265976","DOIUrl":null,"url":null,"abstract":"<p><p><sup>203</sup>Pb is a surrogate imaging match for <sup>212</sup>Pb. This elementally matched pair is emerging as a suitable pair for imaging and targeted radionuclide therapy in cancer care. Because of the half-life (51.9 h) and low-energy γ-rays emitted, <sup>203</sup>Pb is suitable for the development of diagnostic radiopharmaceuticals. The aim of this work was to optimize the production and separation of high-specific-activity <sup>203</sup>Pb using electroplated thallium targets. We further investigated the radiochemistry optimization using a suitable chelator, tetraazacyclododecane-1,4,7-triacetic acid (DO3A), and targeting vector, VMT-α-NET (lead-specific chelator conjugated to tyr3-octreotide via a polyethylene glycol linker). <b>Methods:</b> Targets were prepared by electroplating of natural or enriched (<sup>205</sup>Tl) thallium metal. Scanning electron microscopy was performed to determine the structure and elemental composition of electroplated targets. Targets were irradiated with 24-MeV protons with varying current and beam time to investigate target durability. <sup>203</sup>Pb was purified from the thallium target material using an extraction resin (lead resin) column followed by a second column using a weak cation-exchange resin to elute the lead isotope as [<sup>203</sup>Pb]PbCl<sub>2</sub> Inductively coupled plasma mass spectrometry studies were used to further characterize the separation for trace metal contaminants. Radiolabeling efficiency was also investigated for DO3A chelator and VMT-α-NET (a peptide-based targeting conjugate). <b>Results:</b> Electroplated targets were prepared at a high plating density of 76-114 mg/cm<sup>2</sup> using a plating time of 5 h. A reproducible separation method was established with a final elution in HCl (400 μL, 1 M) suitable for radiolabeling. Greater than 90% recovery yields were achieved, with an average specific activity of 37.7 ± 5.4 GBq/μmol (1.1 ± 0.1 Ci/μmol). <b>Conclusion:</b> An efficient electroplating method was developed to prepare thallium targets suitable for cyclotron irradiation. A simple and fast separation method was developed for routine <sup>203</sup>Pb production with high recovery yields and purity.</p>","PeriodicalId":16758,"journal":{"name":"Journal of Nuclear Medicine","volume":" ","pages":"1791-1797"},"PeriodicalIF":9.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Methods for the Production of High-Purity <sup>203</sup>Pb Using Electroplated Thallium Targets.\",\"authors\":\"Shefali Saini, Jennifer L Bartels, Jean-Pierre K Appiah, Jason H Rider, Nicholas Baumhover, Michael K Schultz, Suzanne E Lapi\",\"doi\":\"10.2967/jnumed.123.265976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><sup>203</sup>Pb is a surrogate imaging match for <sup>212</sup>Pb. This elementally matched pair is emerging as a suitable pair for imaging and targeted radionuclide therapy in cancer care. Because of the half-life (51.9 h) and low-energy γ-rays emitted, <sup>203</sup>Pb is suitable for the development of diagnostic radiopharmaceuticals. The aim of this work was to optimize the production and separation of high-specific-activity <sup>203</sup>Pb using electroplated thallium targets. We further investigated the radiochemistry optimization using a suitable chelator, tetraazacyclododecane-1,4,7-triacetic acid (DO3A), and targeting vector, VMT-α-NET (lead-specific chelator conjugated to tyr3-octreotide via a polyethylene glycol linker). <b>Methods:</b> Targets were prepared by electroplating of natural or enriched (<sup>205</sup>Tl) thallium metal. Scanning electron microscopy was performed to determine the structure and elemental composition of electroplated targets. Targets were irradiated with 24-MeV protons with varying current and beam time to investigate target durability. <sup>203</sup>Pb was purified from the thallium target material using an extraction resin (lead resin) column followed by a second column using a weak cation-exchange resin to elute the lead isotope as [<sup>203</sup>Pb]PbCl<sub>2</sub> Inductively coupled plasma mass spectrometry studies were used to further characterize the separation for trace metal contaminants. Radiolabeling efficiency was also investigated for DO3A chelator and VMT-α-NET (a peptide-based targeting conjugate). <b>Results:</b> Electroplated targets were prepared at a high plating density of 76-114 mg/cm<sup>2</sup> using a plating time of 5 h. A reproducible separation method was established with a final elution in HCl (400 μL, 1 M) suitable for radiolabeling. Greater than 90% recovery yields were achieved, with an average specific activity of 37.7 ± 5.4 GBq/μmol (1.1 ± 0.1 Ci/μmol). <b>Conclusion:</b> An efficient electroplating method was developed to prepare thallium targets suitable for cyclotron irradiation. A simple and fast separation method was developed for routine <sup>203</sup>Pb production with high recovery yields and purity.</p>\",\"PeriodicalId\":16758,\"journal\":{\"name\":\"Journal of Nuclear Medicine\",\"volume\":\" \",\"pages\":\"1791-1797\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2967/jnumed.123.265976\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2967/jnumed.123.265976","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Optimized Methods for the Production of High-Purity 203Pb Using Electroplated Thallium Targets.
203Pb is a surrogate imaging match for 212Pb. This elementally matched pair is emerging as a suitable pair for imaging and targeted radionuclide therapy in cancer care. Because of the half-life (51.9 h) and low-energy γ-rays emitted, 203Pb is suitable for the development of diagnostic radiopharmaceuticals. The aim of this work was to optimize the production and separation of high-specific-activity 203Pb using electroplated thallium targets. We further investigated the radiochemistry optimization using a suitable chelator, tetraazacyclododecane-1,4,7-triacetic acid (DO3A), and targeting vector, VMT-α-NET (lead-specific chelator conjugated to tyr3-octreotide via a polyethylene glycol linker). Methods: Targets were prepared by electroplating of natural or enriched (205Tl) thallium metal. Scanning electron microscopy was performed to determine the structure and elemental composition of electroplated targets. Targets were irradiated with 24-MeV protons with varying current and beam time to investigate target durability. 203Pb was purified from the thallium target material using an extraction resin (lead resin) column followed by a second column using a weak cation-exchange resin to elute the lead isotope as [203Pb]PbCl2 Inductively coupled plasma mass spectrometry studies were used to further characterize the separation for trace metal contaminants. Radiolabeling efficiency was also investigated for DO3A chelator and VMT-α-NET (a peptide-based targeting conjugate). Results: Electroplated targets were prepared at a high plating density of 76-114 mg/cm2 using a plating time of 5 h. A reproducible separation method was established with a final elution in HCl (400 μL, 1 M) suitable for radiolabeling. Greater than 90% recovery yields were achieved, with an average specific activity of 37.7 ± 5.4 GBq/μmol (1.1 ± 0.1 Ci/μmol). Conclusion: An efficient electroplating method was developed to prepare thallium targets suitable for cyclotron irradiation. A simple and fast separation method was developed for routine 203Pb production with high recovery yields and purity.
期刊介绍:
The Journal of Nuclear Medicine (JNM), self-published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), provides readers worldwide with clinical and basic science investigations, continuing education articles, reviews, employment opportunities, and updates on practice and research. In the 2022 Journal Citation Reports (released in June 2023), JNM ranked sixth in impact among 203 medical journals worldwide in the radiology, nuclear medicine, and medical imaging category.