去铁胺诱导的缺铁过程中,根尖和基底外侧Cu处理对铁相关基因调控的影响比较。

Ezgi Evcan, Sukru Gulec
{"title":"去铁胺诱导的缺铁过程中,根尖和基底外侧Cu处理对铁相关基因调控的影响比较。","authors":"Ezgi Evcan,&nbsp;Sukru Gulec","doi":"10.1186/s12263-022-00717-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intestinal copper transporter (Atp7a) mutant-brindled mice with systemic Cu deficiency had elevated Cu levels in enterocyte cells without any perturbation of iron-regulating genes, suggesting that blood Cu level might be important for intestinal iron homeostasis during iron deficiency (ID). We hypothesized that the blood Cu level and polarization (apical and basolateral) of enterocyte cells might be important regulators for the compensatory response on the regulation of genes in enterocyte cells during iron deficiency.</p><p><strong>Methods: </strong>We grew Caco-2 cells on a bicameral cell culture plate to mimic the human intestine system and on a regular tissue culture plate. Iron deficiency was induced by deferoxamine (DFO). The cells were treated with Cu and Cu with Fe following mRNA expressions of DMT1, FPN, TFR, and ANKRD37 were analyzed.</p><p><strong>Results: </strong>Our main finding was that basolateral treatment of Cu significantly reduced mRNA expressions of iron-regulated genes, including DMT1, FPN, TFR, and ANKRD37, compared to DFO-treated and DFO with apical Cu-treated groups in both bicameral and regular tissue culture plates.</p><p><strong>Conclusions: </strong>Cu level in the basolateral side of Caco-2 cells significantly influenced the intracellular gene regulation in DFO-induced iron-deficient condition, and polarization of the cells might be important factor gene regulation in enterocyte cells.</p>","PeriodicalId":12554,"journal":{"name":"Genes & Nutrition","volume":"17 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733202/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of apical and basolateral Cu treatment for iron-related gene regulation during deferoxamine induced iron deficiency.\",\"authors\":\"Ezgi Evcan,&nbsp;Sukru Gulec\",\"doi\":\"10.1186/s12263-022-00717-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intestinal copper transporter (Atp7a) mutant-brindled mice with systemic Cu deficiency had elevated Cu levels in enterocyte cells without any perturbation of iron-regulating genes, suggesting that blood Cu level might be important for intestinal iron homeostasis during iron deficiency (ID). We hypothesized that the blood Cu level and polarization (apical and basolateral) of enterocyte cells might be important regulators for the compensatory response on the regulation of genes in enterocyte cells during iron deficiency.</p><p><strong>Methods: </strong>We grew Caco-2 cells on a bicameral cell culture plate to mimic the human intestine system and on a regular tissue culture plate. Iron deficiency was induced by deferoxamine (DFO). The cells were treated with Cu and Cu with Fe following mRNA expressions of DMT1, FPN, TFR, and ANKRD37 were analyzed.</p><p><strong>Results: </strong>Our main finding was that basolateral treatment of Cu significantly reduced mRNA expressions of iron-regulated genes, including DMT1, FPN, TFR, and ANKRD37, compared to DFO-treated and DFO with apical Cu-treated groups in both bicameral and regular tissue culture plates.</p><p><strong>Conclusions: </strong>Cu level in the basolateral side of Caco-2 cells significantly influenced the intracellular gene regulation in DFO-induced iron-deficient condition, and polarization of the cells might be important factor gene regulation in enterocyte cells.</p>\",\"PeriodicalId\":12554,\"journal\":{\"name\":\"Genes & Nutrition\",\"volume\":\"17 1\",\"pages\":\"16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733202/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12263-022-00717-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12263-022-00717-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:肠道铜转运体(Atp7a)突变斑纹小鼠全身性缺铜时,肠上皮细胞中铜水平升高,但铁调节基因未受干扰,提示血铜水平可能对缺铁(ID)期间肠道铁稳态起重要作用。我们推测血铜水平和肠上皮细胞的极化(顶端和底外侧)可能是铁缺乏时肠上皮细胞基因调节的代偿反应的重要调节因子。方法:将Caco-2细胞分别培养在模拟人肠系统的双层细胞培养板和常规组织培养板上。去铁胺(DFO)诱导缺铁。分别用Cu和Cu加Fe处理细胞,分析DMT1、FPN、TFR和ANKRD37 mRNA的表达。结果:我们的主要发现是,与DFO处理组和DFO顶部Cu处理组相比,基底外侧Cu处理显著降低了铁调控基因的mRNA表达,包括DMT1、FPN、TFR和ANKRD37。结论:dfo诱导的铁缺乏状态下Caco-2细胞基底外侧Cu水平显著影响细胞内基因调控,细胞极化可能是肠细胞基因调控的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of apical and basolateral Cu treatment for iron-related gene regulation during deferoxamine induced iron deficiency.

Background: Intestinal copper transporter (Atp7a) mutant-brindled mice with systemic Cu deficiency had elevated Cu levels in enterocyte cells without any perturbation of iron-regulating genes, suggesting that blood Cu level might be important for intestinal iron homeostasis during iron deficiency (ID). We hypothesized that the blood Cu level and polarization (apical and basolateral) of enterocyte cells might be important regulators for the compensatory response on the regulation of genes in enterocyte cells during iron deficiency.

Methods: We grew Caco-2 cells on a bicameral cell culture plate to mimic the human intestine system and on a regular tissue culture plate. Iron deficiency was induced by deferoxamine (DFO). The cells were treated with Cu and Cu with Fe following mRNA expressions of DMT1, FPN, TFR, and ANKRD37 were analyzed.

Results: Our main finding was that basolateral treatment of Cu significantly reduced mRNA expressions of iron-regulated genes, including DMT1, FPN, TFR, and ANKRD37, compared to DFO-treated and DFO with apical Cu-treated groups in both bicameral and regular tissue culture plates.

Conclusions: Cu level in the basolateral side of Caco-2 cells significantly influenced the intracellular gene regulation in DFO-induced iron-deficient condition, and polarization of the cells might be important factor gene regulation in enterocyte cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From common to rare: repurposing of bempedoic acid for the treatment of glycogen storage disease type 1. Causal associations of 25-hydroxyvitamin D with functional gastrointestinal disorders: a two-sample Mendelian randomization study. Coffee consumption and periodontitis: a Mendelian Randomization study. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. Causal effects of serum lipid biomarkers on early age-related macular degeneration using Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1