Rocío Fuente, Eva-Maria Pastor-Arroyo, Nicole Gehring, Patricia Oro Carbajosa, Laura Alonso-Durán, Ivan Zderic, James Tapia-Dean, Ahmad Kamal Hamid, Carla Bettoni, Fernando Santos, Carsten A Wagner, Isabel Rubio-Aliaga
{"title":"阻断FGF23信号通路可改善x连锁低磷血症小鼠的生长。","authors":"Rocío Fuente, Eva-Maria Pastor-Arroyo, Nicole Gehring, Patricia Oro Carbajosa, Laura Alonso-Durán, Ivan Zderic, James Tapia-Dean, Ahmad Kamal Hamid, Carla Bettoni, Fernando Santos, Carsten A Wagner, Isabel Rubio-Aliaga","doi":"10.1530/JOE-23-0025","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"259 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blocking FGF23 signaling improves the growth plate of mice with X-linked hypophosphatemia.\",\"authors\":\"Rocío Fuente, Eva-Maria Pastor-Arroyo, Nicole Gehring, Patricia Oro Carbajosa, Laura Alonso-Durán, Ivan Zderic, James Tapia-Dean, Ahmad Kamal Hamid, Carla Bettoni, Fernando Santos, Carsten A Wagner, Isabel Rubio-Aliaga\",\"doi\":\"10.1530/JOE-23-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\"259 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-23-0025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-23-0025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Blocking FGF23 signaling improves the growth plate of mice with X-linked hypophosphatemia.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.