阻断FGF23信号通路可改善x连锁低磷血症小鼠的生长。

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Endocrinology Pub Date : 2023-09-01 DOI:10.1530/JOE-23-0025
Rocío Fuente, Eva-Maria Pastor-Arroyo, Nicole Gehring, Patricia Oro Carbajosa, Laura Alonso-Durán, Ivan Zderic, James Tapia-Dean, Ahmad Kamal Hamid, Carla Bettoni, Fernando Santos, Carsten A Wagner, Isabel Rubio-Aliaga
{"title":"阻断FGF23信号通路可改善x连锁低磷血症小鼠的生长。","authors":"Rocío Fuente,&nbsp;Eva-Maria Pastor-Arroyo,&nbsp;Nicole Gehring,&nbsp;Patricia Oro Carbajosa,&nbsp;Laura Alonso-Durán,&nbsp;Ivan Zderic,&nbsp;James Tapia-Dean,&nbsp;Ahmad Kamal Hamid,&nbsp;Carla Bettoni,&nbsp;Fernando Santos,&nbsp;Carsten A Wagner,&nbsp;Isabel Rubio-Aliaga","doi":"10.1530/JOE-23-0025","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"259 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blocking FGF23 signaling improves the growth plate of mice with X-linked hypophosphatemia.\",\"authors\":\"Rocío Fuente,&nbsp;Eva-Maria Pastor-Arroyo,&nbsp;Nicole Gehring,&nbsp;Patricia Oro Carbajosa,&nbsp;Laura Alonso-Durán,&nbsp;Ivan Zderic,&nbsp;James Tapia-Dean,&nbsp;Ahmad Kamal Hamid,&nbsp;Carla Bettoni,&nbsp;Fernando Santos,&nbsp;Carsten A Wagner,&nbsp;Isabel Rubio-Aliaga\",\"doi\":\"10.1530/JOE-23-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\"259 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-23-0025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-23-0025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

成纤维细胞生长因子23 (FGF23)是一种磷酸化激素。x连锁低磷血症(XLH)是由于PHEX基因突变导致循环FGF23水平升高而导致的最普遍的遗传性磷酸盐消耗疾病。临床表现为生长障碍、骨骼和牙齿矿化缺陷。XLH的治疗具有挑战性。自2018年以来,针对FGF23的中和抗体显著改善了XLH患者的治疗,尽管并非所有患者都对这种治疗有完全反应,而且治疗费用非常昂贵。FGF23的c端片段最近被发现是完整FGF23信号传导的阻断剂。在这里,我们用年轻的XLH小鼠(Phex C733RMhda小鼠)分析了短的26个残基长的c端FGF23片段(cFGF23)和两个n -乙酰化和c -修饰的cFGF23肽对生长和骨骼的影响。虽然使用这些肽治疗7天后血液参数没有发生重大变化,但骨长度和生长板结构得到改善。修饰肽可能通过改善生长板的结构和动力学来加快生长速度。幼龄XLH小鼠的软骨细胞增殖、死亡、肥大过程和生长板软骨成分得到部分改善。总之,这些发现有助于理解FGF23信号在生长板代谢中的作用,并表明尽管持续低磷血症也可能发生这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blocking FGF23 signaling improves the growth plate of mice with X-linked hypophosphatemia.

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
期刊最新文献
Effects of tryptophan-selective lipidated glucagon-like peptide 1 (GLP-1) peptides on the GLP-1 receptor. Cardiovascular effects of tirzepatide. The interplay between ECTO and ENDO exposomes on metabolic diseases throughout lifespan: exposome loop as a new concept. The role of glucagon-like peptides in osteosarcopenia. GLP-1R/NPY2R regulate gene expression, ovarian and adrenal morphology in HFD mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1