美国癌症服务领域的多尺度分析

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2022-11-01 DOI:10.1016/j.sste.2022.100545
Changzhen Wang , Tracy Onega , Fahui Wang
{"title":"美国癌症服务领域的多尺度分析","authors":"Changzhen Wang ,&nbsp;Tracy Onega ,&nbsp;Fahui Wang","doi":"10.1016/j.sste.2022.100545","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of delineating Cancer Service Areas (CSAs) is to define a reliable unit of analysis, more meaningful than geopolitical units such as states and counties, for examining geographic variations of the cancer care markets using geographic information systems (GIS). This study aims to provide a multiscale analysis of the U.S. cancer care markets based on the 2014–2015 Medicare claims of cancer-directed surgery, chemotherapy, and radiation. The CSAs are delineated by a scale-flexible network community detection algorithm automated in GIS so that the patient flows are maximized within CSAs and minimized between them. The multiscale CSAs include those comparable in size to those 4 census regions, 9 divisions, 50 states, and also 39 global optimal CSAs that generates the highest modularity value. The CSAs are more effective in capturing the U.S. cancer care markets because of its higher localization index, lower cross-border utilizations, and shorter travel time. The first two comparisons reveal that only a few regions or divisions are representative of the underlying cancer care markets. The last two comparisons find that among the 39 CSAs, 54% CSAs comprise multiple states anchored by cities near inner state borders, 28% are single-state CSAs, and 18% are sub-state CSAs. Their (in)consistencies across state borders or within each state shed new light on where the intervention of cancer care delivery or the adjustment of cancer care costs are needed to meet the challenges in the U.S. cancer care system. The findings could guide stakeholders to target public health policies for more effective coordination of cancer care in improving outcomes and reducing unnecessary costs.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"43 ","pages":"Article 100545"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale analysis of cancer service areas in the United States\",\"authors\":\"Changzhen Wang ,&nbsp;Tracy Onega ,&nbsp;Fahui Wang\",\"doi\":\"10.1016/j.sste.2022.100545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of delineating Cancer Service Areas (CSAs) is to define a reliable unit of analysis, more meaningful than geopolitical units such as states and counties, for examining geographic variations of the cancer care markets using geographic information systems (GIS). This study aims to provide a multiscale analysis of the U.S. cancer care markets based on the 2014–2015 Medicare claims of cancer-directed surgery, chemotherapy, and radiation. The CSAs are delineated by a scale-flexible network community detection algorithm automated in GIS so that the patient flows are maximized within CSAs and minimized between them. The multiscale CSAs include those comparable in size to those 4 census regions, 9 divisions, 50 states, and also 39 global optimal CSAs that generates the highest modularity value. The CSAs are more effective in capturing the U.S. cancer care markets because of its higher localization index, lower cross-border utilizations, and shorter travel time. The first two comparisons reveal that only a few regions or divisions are representative of the underlying cancer care markets. The last two comparisons find that among the 39 CSAs, 54% CSAs comprise multiple states anchored by cities near inner state borders, 28% are single-state CSAs, and 18% are sub-state CSAs. Their (in)consistencies across state borders or within each state shed new light on where the intervention of cancer care delivery or the adjustment of cancer care costs are needed to meet the challenges in the U.S. cancer care system. The findings could guide stakeholders to target public health policies for more effective coordination of cancer care in improving outcomes and reducing unnecessary costs.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"43 \",\"pages\":\"Article 100545\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584522000685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584522000685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 1

摘要

描绘癌症服务区域(csa)的目的是定义一个可靠的分析单位,比地缘政治单位(如州和县)更有意义,用于使用地理信息系统(GIS)检查癌症护理市场的地理变化。本研究旨在基于2014-2015年针对癌症的手术、化疗和放疗的医疗保险索赔,对美国癌症护理市场进行多尺度分析。csa由一个在GIS中自动化的规模灵活的网络社区检测算法来描述,这样患者流量在csa内最大化,在csa之间最小化。多尺度csa包括与4个人口普查区、9个区划、50个州的规模相当的csa,以及产生模块化值最高的39个全球最优csa。csa在占领美国癌症护理市场方面更有效,因为它具有更高的本地化指数、更低的跨境利用率和更短的旅行时间。前两个比较表明,只有少数地区或部门是潜在的癌症治疗市场的代表。最后两项比较发现,在39个csa中,54%的csa由多个州组成,由靠近州内边界的城市锚定,28%是单州csa, 18%是次州csa。它们在州际或州内的一致性为癌症治疗的干预或癌症治疗成本的调整提供了新的视角,以应对美国癌症治疗系统的挑战。研究结果可以指导利益相关者制定公共卫生政策,以更有效地协调癌症治疗,改善结果并减少不必要的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale analysis of cancer service areas in the United States

The purpose of delineating Cancer Service Areas (CSAs) is to define a reliable unit of analysis, more meaningful than geopolitical units such as states and counties, for examining geographic variations of the cancer care markets using geographic information systems (GIS). This study aims to provide a multiscale analysis of the U.S. cancer care markets based on the 2014–2015 Medicare claims of cancer-directed surgery, chemotherapy, and radiation. The CSAs are delineated by a scale-flexible network community detection algorithm automated in GIS so that the patient flows are maximized within CSAs and minimized between them. The multiscale CSAs include those comparable in size to those 4 census regions, 9 divisions, 50 states, and also 39 global optimal CSAs that generates the highest modularity value. The CSAs are more effective in capturing the U.S. cancer care markets because of its higher localization index, lower cross-border utilizations, and shorter travel time. The first two comparisons reveal that only a few regions or divisions are representative of the underlying cancer care markets. The last two comparisons find that among the 39 CSAs, 54% CSAs comprise multiple states anchored by cities near inner state borders, 28% are single-state CSAs, and 18% are sub-state CSAs. Their (in)consistencies across state borders or within each state shed new light on where the intervention of cancer care delivery or the adjustment of cancer care costs are needed to meet the challenges in the U.S. cancer care system. The findings could guide stakeholders to target public health policies for more effective coordination of cancer care in improving outcomes and reducing unnecessary costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1