{"title":"EGCG减弱小鼠自我给药和重新寻求冰毒","authors":"Zizhen Si, Xidi Wang, Zhaoying Yu, Yuer Ruan, Liyin Qian, Shujun Lin, Xinshuang Gong, Longhui Li, Jing Huang, Yu Liu","doi":"10.1111/adb.13307","DOIUrl":null,"url":null,"abstract":"<p>Methamphetamine (METH) use disorder is a chronic, relapsing disorder and involves frequent failures of self-control of drug seeking and taking. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compounds of green tea, which has shown great therapeutic effectiveness in neurological disorders. However, it is still unknown whether and how EGCG affects METH seeking behaviour. Here, we show nanostructured EGCG/ascorbic acid nanoparticles (EGCG/AA NPs) dose-dependently reduced METH self-administration (SA) under fixed-ratio 1 (FR1) and progressive ratio (PR) reinforcement schedules in mice and shifted METH dose–response curves downward. Furthermore, EGCG/AA NPs decreased drug- and cue-induced METH seeking. In addition, we found that METH SA led to a decrease in inhibitory postsynaptic currents (IPSCs) and increase in the AMPAR/NMDAR ratio and excitation/inhibition (E/I) ratio in ex vivo midbrain slices from ventral tegmental area (VTA) dopamine neurons. EGCG/AA NPs enhanced Gamma-aminobutyric acid (GABA)ergic inhibition and normalized the E/I ratio. EGCG restored the balance between excitation and inhibition in VTA dopamine neurons, which may contribute to the attenuation of METH SA. These findings indicate that EGCG is a promising pharmacotherapy for METH use disorder.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"28 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EGCG attenuates METH self-administration and reinstatement of METH seeking in mice\",\"authors\":\"Zizhen Si, Xidi Wang, Zhaoying Yu, Yuer Ruan, Liyin Qian, Shujun Lin, Xinshuang Gong, Longhui Li, Jing Huang, Yu Liu\",\"doi\":\"10.1111/adb.13307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methamphetamine (METH) use disorder is a chronic, relapsing disorder and involves frequent failures of self-control of drug seeking and taking. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compounds of green tea, which has shown great therapeutic effectiveness in neurological disorders. However, it is still unknown whether and how EGCG affects METH seeking behaviour. Here, we show nanostructured EGCG/ascorbic acid nanoparticles (EGCG/AA NPs) dose-dependently reduced METH self-administration (SA) under fixed-ratio 1 (FR1) and progressive ratio (PR) reinforcement schedules in mice and shifted METH dose–response curves downward. Furthermore, EGCG/AA NPs decreased drug- and cue-induced METH seeking. In addition, we found that METH SA led to a decrease in inhibitory postsynaptic currents (IPSCs) and increase in the AMPAR/NMDAR ratio and excitation/inhibition (E/I) ratio in ex vivo midbrain slices from ventral tegmental area (VTA) dopamine neurons. EGCG/AA NPs enhanced Gamma-aminobutyric acid (GABA)ergic inhibition and normalized the E/I ratio. EGCG restored the balance between excitation and inhibition in VTA dopamine neurons, which may contribute to the attenuation of METH SA. These findings indicate that EGCG is a promising pharmacotherapy for METH use disorder.</p>\",\"PeriodicalId\":7289,\"journal\":{\"name\":\"Addiction Biology\",\"volume\":\"28 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Addiction Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/adb.13307\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.13307","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
EGCG attenuates METH self-administration and reinstatement of METH seeking in mice
Methamphetamine (METH) use disorder is a chronic, relapsing disorder and involves frequent failures of self-control of drug seeking and taking. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compounds of green tea, which has shown great therapeutic effectiveness in neurological disorders. However, it is still unknown whether and how EGCG affects METH seeking behaviour. Here, we show nanostructured EGCG/ascorbic acid nanoparticles (EGCG/AA NPs) dose-dependently reduced METH self-administration (SA) under fixed-ratio 1 (FR1) and progressive ratio (PR) reinforcement schedules in mice and shifted METH dose–response curves downward. Furthermore, EGCG/AA NPs decreased drug- and cue-induced METH seeking. In addition, we found that METH SA led to a decrease in inhibitory postsynaptic currents (IPSCs) and increase in the AMPAR/NMDAR ratio and excitation/inhibition (E/I) ratio in ex vivo midbrain slices from ventral tegmental area (VTA) dopamine neurons. EGCG/AA NPs enhanced Gamma-aminobutyric acid (GABA)ergic inhibition and normalized the E/I ratio. EGCG restored the balance between excitation and inhibition in VTA dopamine neurons, which may contribute to the attenuation of METH SA. These findings indicate that EGCG is a promising pharmacotherapy for METH use disorder.
期刊介绍:
Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields.
Addiction Biology includes peer-reviewed original research reports and reviews.
Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.