Lele Xu, Zhiqian Ma, Yang Li, Zhaoxia Pang, Shuqi Xiao
{"title":"抗体依赖性增强:疫苗开发中不可避免的问题。","authors":"Lele Xu, Zhiqian Ma, Yang Li, Zhaoxia Pang, Shuqi Xiao","doi":"10.1016/bs.ai.2021.08.003","DOIUrl":null,"url":null,"abstract":"<p><p>In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.</p>","PeriodicalId":50862,"journal":{"name":"Advances in Immunology","volume":"151 ","pages":"99-133"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438590/pdf/","citationCount":"27","resultStr":"{\"title\":\"Antibody dependent enhancement: Unavoidable problems in vaccine development.\",\"authors\":\"Lele Xu, Zhiqian Ma, Yang Li, Zhaoxia Pang, Shuqi Xiao\",\"doi\":\"10.1016/bs.ai.2021.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.</p>\",\"PeriodicalId\":50862,\"journal\":{\"name\":\"Advances in Immunology\",\"volume\":\"151 \",\"pages\":\"99-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438590/pdf/\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ai.2021.08.003\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.ai.2021.08.003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Antibody dependent enhancement: Unavoidable problems in vaccine development.
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
期刊介绍:
Advances in Immunology has provided students and researchers with the latest information in Immunology for over 50 years. You can continue to rely on Advances in Immunology to provide you with critical reviews that examine subjects of vital importance to the field through summary and evaluation of current knowledge and research. The articles stress fundamental concepts, but also evaluate the experimental approaches.