{"title":"从纽带到事件:组织间交流关系分析。","authors":"Federica Bianchi, Alessandro Lomi","doi":"10.1177/10944281211058469","DOIUrl":null,"url":null,"abstract":"<p><p>Relational event models expand the analytical possibilities of existing statistical models for interorganizational networks by: (i) making efficient use of information contained in the sequential ordering of observed events connecting sending and receiving units; (ii) accounting for the intensity of the relation between exchange partners, and (iii) distinguishing between short- and long-term network effects. We introduce a recently developed relational event model (REM) for the analysis of continuously observed interorganizational exchange relations. The combination of efficient sampling algorithms and sender-based stratification makes the models that we present particularly useful for the analysis of very large samples of relational event data generated by interaction among heterogeneous actors. We demonstrate the empirical value of event-oriented network models in two different settings for interorganizational exchange relations-that is, high-frequency overnight transactions among European banks and patient-sharing relations within a community of Italian hospitals. We focus on patterns of direct and generalized reciprocity while accounting for more complex forms of dependence present in the data. Empirical results suggest that distinguishing between degree- and intensity-based network effects, and between short- and long-term effects is crucial to our understanding of the dynamics of interorganizational dependence and exchange relations. We discuss the general implications of these results for the analysis of social interaction data routinely collected in organizational research to examine the evolutionary dynamics of social networks within and between organizations.</p>","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"26 3","pages":"524-565"},"PeriodicalIF":8.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/40/59/10.1177_10944281211058469.PMC10278390.pdf","citationCount":"7","resultStr":"{\"title\":\"From Ties to Events in the Analysis of Interorganizational Exchange Relations.\",\"authors\":\"Federica Bianchi, Alessandro Lomi\",\"doi\":\"10.1177/10944281211058469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relational event models expand the analytical possibilities of existing statistical models for interorganizational networks by: (i) making efficient use of information contained in the sequential ordering of observed events connecting sending and receiving units; (ii) accounting for the intensity of the relation between exchange partners, and (iii) distinguishing between short- and long-term network effects. We introduce a recently developed relational event model (REM) for the analysis of continuously observed interorganizational exchange relations. The combination of efficient sampling algorithms and sender-based stratification makes the models that we present particularly useful for the analysis of very large samples of relational event data generated by interaction among heterogeneous actors. We demonstrate the empirical value of event-oriented network models in two different settings for interorganizational exchange relations-that is, high-frequency overnight transactions among European banks and patient-sharing relations within a community of Italian hospitals. We focus on patterns of direct and generalized reciprocity while accounting for more complex forms of dependence present in the data. Empirical results suggest that distinguishing between degree- and intensity-based network effects, and between short- and long-term effects is crucial to our understanding of the dynamics of interorganizational dependence and exchange relations. We discuss the general implications of these results for the analysis of social interaction data routinely collected in organizational research to examine the evolutionary dynamics of social networks within and between organizations.</p>\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\"26 3\",\"pages\":\"524-565\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/40/59/10.1177_10944281211058469.PMC10278390.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281211058469\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281211058469","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
From Ties to Events in the Analysis of Interorganizational Exchange Relations.
Relational event models expand the analytical possibilities of existing statistical models for interorganizational networks by: (i) making efficient use of information contained in the sequential ordering of observed events connecting sending and receiving units; (ii) accounting for the intensity of the relation between exchange partners, and (iii) distinguishing between short- and long-term network effects. We introduce a recently developed relational event model (REM) for the analysis of continuously observed interorganizational exchange relations. The combination of efficient sampling algorithms and sender-based stratification makes the models that we present particularly useful for the analysis of very large samples of relational event data generated by interaction among heterogeneous actors. We demonstrate the empirical value of event-oriented network models in two different settings for interorganizational exchange relations-that is, high-frequency overnight transactions among European banks and patient-sharing relations within a community of Italian hospitals. We focus on patterns of direct and generalized reciprocity while accounting for more complex forms of dependence present in the data. Empirical results suggest that distinguishing between degree- and intensity-based network effects, and between short- and long-term effects is crucial to our understanding of the dynamics of interorganizational dependence and exchange relations. We discuss the general implications of these results for the analysis of social interaction data routinely collected in organizational research to examine the evolutionary dynamics of social networks within and between organizations.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.