{"title":"氧化应激在糖尿病并发症中的作用及其抗氧化剂的管理。","authors":"Hasandeep Singh, Rajanpreet Singh, Arshdeep Singh, Harshbir Singh, Gurpreet Singh, Sarabjit Kaur, Balbir Singh","doi":"10.1080/13813455.2023.2243651","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"616-641"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of oxidative stress in diabetes-induced complications and their management with antioxidants.\",\"authors\":\"Hasandeep Singh, Rajanpreet Singh, Arshdeep Singh, Harshbir Singh, Gurpreet Singh, Sarabjit Kaur, Balbir Singh\",\"doi\":\"10.1080/13813455.2023.2243651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"616-641\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2023.2243651\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2023.2243651","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Role of oxidative stress in diabetes-induced complications and their management with antioxidants.
Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.