{"title":"模拟胃酸对氧化锆与树脂水泥界面的影响","authors":"Natália Almeida Bastos-Bitencourt, Sandro Basso Bitencourt, Najm Alfrisany, Beshr Hajhamid, Grace Mendonca De Souza","doi":"10.11607/ijp.8162","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the effect of simulated gastric acid solution (SGAS) and resin cement composition on the shear bond strength (SBS) of zirconia-based materials with different levels of translucency to composite resin.</p><p><strong>Materials and methods: </strong>A total of 40 medium-opacity (MO; 3Y-TZP) and 40 medium-translucency (MT; 4Y-PSZ) zirconia slabs were distributed into four groups according to the composition of the resin luting system (MDP free or with MDP [primer + Panavia V5]) and storage method (distilled water or SGAS [5% hydrochloric acid]). Composite resin cylinders were cemented on the zirconia surface and stored for 91 hours. SBS, failure mode, and surface characterization analyses via scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were performed. SBS data were analyzed using three-way ANOVA and Tukey tests, and failure mode was assessed using one-way ANOVA (P < .05).</p><p><strong>Results: </strong>Storage media (P = .180), resin cement (P = .110), zirconia (P = .404), and their interactions did not affect SBS values. Bond strength ranged from 21.41 to 26.11 MPa. SEM images showed that SGAS modified the surface topography of zirconia and resin cement. The presence of chlorine and silicon (wt%) were higher after SGAS storage than after water storage in both cements used, while barium was higher only for the MDP cement. There was a prevalence of mixed failures for most of the groups.</p><p><strong>Conclusions: </strong>The SBS between both types of zirconia and resin cement was not affected by SGAS, although changes in zirconia topography were observed after SGAS exposure. The presence of MDP in the cement layer had no effect on the SBS challenged by SGAS.</p>","PeriodicalId":50292,"journal":{"name":"International Journal of Prosthodontics","volume":" ","pages":"190-198"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Simulated Gastric Acid on the Interface Between Zirconia and Resin Cement.\",\"authors\":\"Natália Almeida Bastos-Bitencourt, Sandro Basso Bitencourt, Najm Alfrisany, Beshr Hajhamid, Grace Mendonca De Souza\",\"doi\":\"10.11607/ijp.8162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the effect of simulated gastric acid solution (SGAS) and resin cement composition on the shear bond strength (SBS) of zirconia-based materials with different levels of translucency to composite resin.</p><p><strong>Materials and methods: </strong>A total of 40 medium-opacity (MO; 3Y-TZP) and 40 medium-translucency (MT; 4Y-PSZ) zirconia slabs were distributed into four groups according to the composition of the resin luting system (MDP free or with MDP [primer + Panavia V5]) and storage method (distilled water or SGAS [5% hydrochloric acid]). Composite resin cylinders were cemented on the zirconia surface and stored for 91 hours. SBS, failure mode, and surface characterization analyses via scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were performed. SBS data were analyzed using three-way ANOVA and Tukey tests, and failure mode was assessed using one-way ANOVA (P < .05).</p><p><strong>Results: </strong>Storage media (P = .180), resin cement (P = .110), zirconia (P = .404), and their interactions did not affect SBS values. Bond strength ranged from 21.41 to 26.11 MPa. SEM images showed that SGAS modified the surface topography of zirconia and resin cement. The presence of chlorine and silicon (wt%) were higher after SGAS storage than after water storage in both cements used, while barium was higher only for the MDP cement. There was a prevalence of mixed failures for most of the groups.</p><p><strong>Conclusions: </strong>The SBS between both types of zirconia and resin cement was not affected by SGAS, although changes in zirconia topography were observed after SGAS exposure. The presence of MDP in the cement layer had no effect on the SBS challenged by SGAS.</p>\",\"PeriodicalId\":50292,\"journal\":{\"name\":\"International Journal of Prosthodontics\",\"volume\":\" \",\"pages\":\"190-198\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prosthodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11607/ijp.8162\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prosthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/ijp.8162","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of Simulated Gastric Acid on the Interface Between Zirconia and Resin Cement.
Purpose: To evaluate the effect of simulated gastric acid solution (SGAS) and resin cement composition on the shear bond strength (SBS) of zirconia-based materials with different levels of translucency to composite resin.
Materials and methods: A total of 40 medium-opacity (MO; 3Y-TZP) and 40 medium-translucency (MT; 4Y-PSZ) zirconia slabs were distributed into four groups according to the composition of the resin luting system (MDP free or with MDP [primer + Panavia V5]) and storage method (distilled water or SGAS [5% hydrochloric acid]). Composite resin cylinders were cemented on the zirconia surface and stored for 91 hours. SBS, failure mode, and surface characterization analyses via scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were performed. SBS data were analyzed using three-way ANOVA and Tukey tests, and failure mode was assessed using one-way ANOVA (P < .05).
Results: Storage media (P = .180), resin cement (P = .110), zirconia (P = .404), and their interactions did not affect SBS values. Bond strength ranged from 21.41 to 26.11 MPa. SEM images showed that SGAS modified the surface topography of zirconia and resin cement. The presence of chlorine and silicon (wt%) were higher after SGAS storage than after water storage in both cements used, while barium was higher only for the MDP cement. There was a prevalence of mixed failures for most of the groups.
Conclusions: The SBS between both types of zirconia and resin cement was not affected by SGAS, although changes in zirconia topography were observed after SGAS exposure. The presence of MDP in the cement layer had no effect on the SBS challenged by SGAS.
期刊介绍:
Official Journal of the European Association for Osseointegration (EAO), the International College of Prosthodontists (ICP), the German Society of Prosthodontics and Dental Materials Science (DGPro), and the Italian Academy of Prosthetic Dentistry (AIOP)
Prosthodontics demands a clinical research emphasis on patient- and dentist-mediated concerns in the management of oral rehabilitation needs. It is about making and implementing the best clinical decisions to enhance patients'' quality of life via applied biologic architecture - a role that far exceeds that of traditional prosthetic dentistry, with its emphasis on materials and techniques. The International Journal of Prosthodontics is dedicated to exploring and developing this conceptual shift in the role of today''s prosthodontist, clinician, and educator alike. The editorial board is composed of a distinguished team of leading international scholars.