使用YOLOv5x在光学显微镜图像中自动检测隐孢子虫:一项比较研究。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-09-26 DOI:10.1139/bcb-2023-0059
Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto
{"title":"使用YOLOv5x在光学显微镜图像中自动检测隐孢子虫:一项比较研究。","authors":"Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto","doi":"10.1139/bcb-2023-0059","DOIUrl":null,"url":null,"abstract":"<p><p>Here, a machine learning tool (YOLOv5) enables the detection of <i>Cryptosporidium</i> microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for <i>Cryptosporidium</i> detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for <i>Cryptosporidium</i> detection considering the differences in computational costs of the models.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of <i>Cryptosporidium</i> in optical microscopy images using YOLOv5<i>x</i>: a comparative study.\",\"authors\":\"Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto\",\"doi\":\"10.1139/bcb-2023-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, a machine learning tool (YOLOv5) enables the detection of <i>Cryptosporidium</i> microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for <i>Cryptosporidium</i> detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for <i>Cryptosporidium</i> detection considering the differences in computational costs of the models.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这里,机器学习工具(YOLOv5)能够使用光学和相差显微镜图像检测隐孢子虫微生物。使用520张图像(光学显微镜)和1200张图像(相差显微镜)对这两个数据库进行处理。它使用Python库对图像进行标记、标准化大小和裁剪,以生成YOLOv5网络的输入张量(s、m和l)。它在光学和相差显微镜图像中使用随机初始化的权重进行了两个实验。另外两个实验使用了在重新训练模型之前和之后获得的最佳训练时间的参数。用于评估模型准确性的指标是平均准确性、混淆矩阵和F1分数。所有三个指标都证实,最优模型使用了光学成像训练和相位对比成像再训练的最佳时期。用光学成像随机初始化权重的实验显示隐孢子虫的检测精度最低。最稳定的模型是YOLOv5m,在所有类别中都有最好的结果。然而,所有模型之间的差异都低于2%,考虑到模型计算成本的差异,YOLOv5s是隐孢子虫检测的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic detection of Cryptosporidium in optical microscopy images using YOLOv5x: a comparative study.

Here, a machine learning tool (YOLOv5) enables the detection of Cryptosporidium microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for Cryptosporidium detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for Cryptosporidium detection considering the differences in computational costs of the models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1