源自小鼠骨髓间充质干细胞的外泌体通过 miR-155- 5p/Trim32 轴抑制核浆细胞凋亡

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-01-01 DOI:10.2174/1566524023666230816090843
Fei Chen, Shangze Li, Ji Wu, Qunfeng Guo, Haibin Wang, Bin Ni, Jun Yang
{"title":"源自小鼠骨髓间充质干细胞的外泌体通过 miR-155- 5p/Trim32 轴抑制核浆细胞凋亡","authors":"Fei Chen, Shangze Li, Ji Wu, Qunfeng Guo, Haibin Wang, Bin Ni, Jun Yang","doi":"10.2174/1566524023666230816090843","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lower back pain, shown to be strongly associated with IVDD, affects approximately 60%-80% of adults and has a considerable societal and economic impact. Evidence suggests that IVDD, caused by abnormal apoptosis of nucleus pulposus cells (NPCs), can be treated using MSC-derived exosomes.</p><p><strong>Objective: </strong>This study aimed to evaluate the role of miR155-5p/Trim32 in intervertebral disc disease (IVDD) and elucidate the underlying molecular mechanisms. Deregulating miR-155 has been shown to promote Fas-mediated apoptosis in human IVDD. Evidence also suggests that tripartite motif (TRIM)-containing protein 32 (Trim32) is regulated by miR-155. However, the role of miR155-5p/Trim32 in IVDD remains unclear.</p><p><strong>Methods: </strong>Cell viability was checked using CCK-8 kits, and flow cytometry was used to analyze cell cycle and apoptosis. Cell migration was measured with a Transwell assay, while a luciferase assay was adopted to study how miR-155-5p interacts with Trim32. The roles of Trim32 and miR-155-5p were studied by silencing or up-regulating them in NPCs, while qPCR and immunoblots were used to evaluate mRNA and protein changes, respectively.</p><p><strong>Results: </strong>TNF-α treatment significantly inhibited cell viability but promoted Trim32 expression in primary mouse NPCs. Administration of bone marrow mesenchymal stem cells (BMSCs) attenuated primary NPC cell cycle arrest and apoptosis induced by TNF- α. BMSCs-derived exosomes could be taken up by NPCs to inhibit TNF-α-induced cell cycle arrest and apoptosis through miR-155-5p. Examination of the underlying mechanism showed that miR-155-5p targeted Trim32. Moreover, Trim32 overexpression inhibited the effect of BMSCs-derived exosomes on primary mouse NPC cell apoptosis induced by TNF-α.</p><p><strong>Conclusion: </strong>Overall, these findings suggest that exosomes from BMSCs can suppress TNF-α-induced cell cycle arrest and apoptosis in primary mouse NPCs through the delivery of miR-155-5p by targeting Trim32. This study provides a promising therapeutic strategy for IVDD.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes derived from Mouse Bone Marrow Mesenchymal Stem Cells Attenuate Nucleus Pulposus Cell Apoptosis via the miR-155- 5p/Trim32 Axis.\",\"authors\":\"Fei Chen, Shangze Li, Ji Wu, Qunfeng Guo, Haibin Wang, Bin Ni, Jun Yang\",\"doi\":\"10.2174/1566524023666230816090843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lower back pain, shown to be strongly associated with IVDD, affects approximately 60%-80% of adults and has a considerable societal and economic impact. Evidence suggests that IVDD, caused by abnormal apoptosis of nucleus pulposus cells (NPCs), can be treated using MSC-derived exosomes.</p><p><strong>Objective: </strong>This study aimed to evaluate the role of miR155-5p/Trim32 in intervertebral disc disease (IVDD) and elucidate the underlying molecular mechanisms. Deregulating miR-155 has been shown to promote Fas-mediated apoptosis in human IVDD. Evidence also suggests that tripartite motif (TRIM)-containing protein 32 (Trim32) is regulated by miR-155. However, the role of miR155-5p/Trim32 in IVDD remains unclear.</p><p><strong>Methods: </strong>Cell viability was checked using CCK-8 kits, and flow cytometry was used to analyze cell cycle and apoptosis. Cell migration was measured with a Transwell assay, while a luciferase assay was adopted to study how miR-155-5p interacts with Trim32. The roles of Trim32 and miR-155-5p were studied by silencing or up-regulating them in NPCs, while qPCR and immunoblots were used to evaluate mRNA and protein changes, respectively.</p><p><strong>Results: </strong>TNF-α treatment significantly inhibited cell viability but promoted Trim32 expression in primary mouse NPCs. Administration of bone marrow mesenchymal stem cells (BMSCs) attenuated primary NPC cell cycle arrest and apoptosis induced by TNF- α. BMSCs-derived exosomes could be taken up by NPCs to inhibit TNF-α-induced cell cycle arrest and apoptosis through miR-155-5p. Examination of the underlying mechanism showed that miR-155-5p targeted Trim32. Moreover, Trim32 overexpression inhibited the effect of BMSCs-derived exosomes on primary mouse NPC cell apoptosis induced by TNF-α.</p><p><strong>Conclusion: </strong>Overall, these findings suggest that exosomes from BMSCs can suppress TNF-α-induced cell cycle arrest and apoptosis in primary mouse NPCs through the delivery of miR-155-5p by targeting Trim32. This study provides a promising therapeutic strategy for IVDD.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1566524023666230816090843\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1566524023666230816090843","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:下背痛与 IVDD 密切相关,约有 60%-80% 的成年人患有下背痛,对社会和经济产生了重大影响。有证据表明,由髓核细胞(NPC)异常凋亡引起的腰椎间盘突出症可以通过间充质干细胞衍生的外泌体进行治疗:本研究旨在评估miR155-5p/Trim32在椎间盘疾病(IVDD)中的作用,并阐明其潜在的分子机制。研究表明,在人类 IVDD 中,miR-155 的失调可促进 Fas 介导的细胞凋亡。还有证据表明,含三方基序(TRIM)蛋白 32(Trim32)受 miR-155 的调控。然而,miR155-5p/Trim32在IVDD中的作用仍不清楚:方法:用 CCK-8 试剂盒检测细胞活力,用流式细胞术分析细胞周期和细胞凋亡。方法:使用 CCK-8 试剂盒检测细胞活力,使用流式细胞术分析细胞周期和凋亡,使用 Transwell 试验测定细胞迁移,使用荧光素酶试验研究 miR-155-5p 与 Trim32 的相互作用。通过沉默或上调 Trim32 和 miR-155-5p 研究了它们在鼻咽癌中的作用,并用 qPCR 和免疫印迹分别评估了 mRNA 和蛋白质的变化:结果:TNF-α处理明显抑制了小鼠原代鼻咽癌细胞的活力,但促进了Trim32的表达。骨髓间充质干细胞可通过miR-155-5p抑制TNF-α诱导的细胞周期停滞和细胞凋亡。对其潜在机制的研究表明,miR-155-5p 以 Trim32 为靶标。此外,Trim32的过表达抑制了BMSCs衍生的外泌体对TNF-α诱导的原代小鼠鼻咽癌细胞凋亡的影响:总之,这些研究结果表明,BMSCs外泌体可通过靶向Trim32传递miR-155-5p,抑制TNF-α诱导的原代小鼠鼻咽癌细胞周期停滞和凋亡。这项研究为 IVDD 提供了一种前景广阔的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exosomes derived from Mouse Bone Marrow Mesenchymal Stem Cells Attenuate Nucleus Pulposus Cell Apoptosis via the miR-155- 5p/Trim32 Axis.

Background: Lower back pain, shown to be strongly associated with IVDD, affects approximately 60%-80% of adults and has a considerable societal and economic impact. Evidence suggests that IVDD, caused by abnormal apoptosis of nucleus pulposus cells (NPCs), can be treated using MSC-derived exosomes.

Objective: This study aimed to evaluate the role of miR155-5p/Trim32 in intervertebral disc disease (IVDD) and elucidate the underlying molecular mechanisms. Deregulating miR-155 has been shown to promote Fas-mediated apoptosis in human IVDD. Evidence also suggests that tripartite motif (TRIM)-containing protein 32 (Trim32) is regulated by miR-155. However, the role of miR155-5p/Trim32 in IVDD remains unclear.

Methods: Cell viability was checked using CCK-8 kits, and flow cytometry was used to analyze cell cycle and apoptosis. Cell migration was measured with a Transwell assay, while a luciferase assay was adopted to study how miR-155-5p interacts with Trim32. The roles of Trim32 and miR-155-5p were studied by silencing or up-regulating them in NPCs, while qPCR and immunoblots were used to evaluate mRNA and protein changes, respectively.

Results: TNF-α treatment significantly inhibited cell viability but promoted Trim32 expression in primary mouse NPCs. Administration of bone marrow mesenchymal stem cells (BMSCs) attenuated primary NPC cell cycle arrest and apoptosis induced by TNF- α. BMSCs-derived exosomes could be taken up by NPCs to inhibit TNF-α-induced cell cycle arrest and apoptosis through miR-155-5p. Examination of the underlying mechanism showed that miR-155-5p targeted Trim32. Moreover, Trim32 overexpression inhibited the effect of BMSCs-derived exosomes on primary mouse NPC cell apoptosis induced by TNF-α.

Conclusion: Overall, these findings suggest that exosomes from BMSCs can suppress TNF-α-induced cell cycle arrest and apoptosis in primary mouse NPCs through the delivery of miR-155-5p by targeting Trim32. This study provides a promising therapeutic strategy for IVDD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
Role of Nrf2 in Epilepsy Treatment. Exploring the Neuroprotective Potential of Icariin through Modulation of Neural Pathways in the Treatment of Neurological Diseases. Multiplex PCR System for the Diagnosis of Plague. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Fascin Inhibitor NP-G2-044 Decreases Cell Metastasis and Increases Overall Survival of Mice-Bearing Lung Cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1