人间充质干细胞成骨分化过程基因的时间序列聚类分析。

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genetic systems Pub Date : 2022-12-17 DOI:10.1266/ggs.22-00068
Yaqiong Li, Jun Wang
{"title":"人间充质干细胞成骨分化过程基因的时间序列聚类分析。","authors":"Yaqiong Li,&nbsp;Jun Wang","doi":"10.1266/ggs.22-00068","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the gene expression pattern and related biological changes during osteogenic differentiation of human mesenchymal stem cells (hMSCs), we downloaded expression data for four uninduced hMSC samples, and 12 osteogenic induction samples at day 2, 8, 12 or 25, in the GSE37558 dataset. Differentially expressed genes (DEGs) between groups were screened, followed by short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA). Osteogenic differentiation-related genes were extracted from the GeneCards database. Next, functional enrichment was performed, and protein-protein interaction (PPI) and lncRNA-miRNA-mRNA networks were constructed. Compared to uninduced hMSC samples, 163, 341, 447 and 537 DEGs were found in osteogenic induction samples at day 2, 8, 12 and 25, respectively, showing a sustainably increased trend. From STEM, WGCNA and the GeneCards database, a total of 107 key genes associated with osteogenic differentiation were screened; these genes were enriched in biological processes, such as ossification, ECM-receptor interaction, vasculature development, cartilage development and bone mineralization, as well as the Wnt signaling pathway and the chemokine signaling pathway. The PPI network identified four hub genes, STAT5A, TWIST1, FOXO1 and LEP. The lncRNA-miRNA-mRNA network revealed regulatory axes for STAT5A, FOXO1 and LEP. Three and two regulatory axes were found for STAT5A and LEP, respectively. Multiple regulatory axes for FOXO1 were found, such as MIR155HG-miR-223-FOXO1. This study identifies candidate key targets that may play important roles in regulating osteogenic differentiation of hMSCs, and provides novel information to further investigate the molecular regulation mechanism. More experiments are required to evaluate the effects of these genes on osteogenic differentiation of hMSCs.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"97 4","pages":"209-218"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time series clustering analysis of genes during osteogenic differentiation of human mesenchymal stem cells.\",\"authors\":\"Yaqiong Li,&nbsp;Jun Wang\",\"doi\":\"10.1266/ggs.22-00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the gene expression pattern and related biological changes during osteogenic differentiation of human mesenchymal stem cells (hMSCs), we downloaded expression data for four uninduced hMSC samples, and 12 osteogenic induction samples at day 2, 8, 12 or 25, in the GSE37558 dataset. Differentially expressed genes (DEGs) between groups were screened, followed by short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA). Osteogenic differentiation-related genes were extracted from the GeneCards database. Next, functional enrichment was performed, and protein-protein interaction (PPI) and lncRNA-miRNA-mRNA networks were constructed. Compared to uninduced hMSC samples, 163, 341, 447 and 537 DEGs were found in osteogenic induction samples at day 2, 8, 12 and 25, respectively, showing a sustainably increased trend. From STEM, WGCNA and the GeneCards database, a total of 107 key genes associated with osteogenic differentiation were screened; these genes were enriched in biological processes, such as ossification, ECM-receptor interaction, vasculature development, cartilage development and bone mineralization, as well as the Wnt signaling pathway and the chemokine signaling pathway. The PPI network identified four hub genes, STAT5A, TWIST1, FOXO1 and LEP. The lncRNA-miRNA-mRNA network revealed regulatory axes for STAT5A, FOXO1 and LEP. Three and two regulatory axes were found for STAT5A and LEP, respectively. Multiple regulatory axes for FOXO1 were found, such as MIR155HG-miR-223-FOXO1. This study identifies candidate key targets that may play important roles in regulating osteogenic differentiation of hMSCs, and provides novel information to further investigate the molecular regulation mechanism. More experiments are required to evaluate the effects of these genes on osteogenic differentiation of hMSCs.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":\"97 4\",\"pages\":\"209-218\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.22-00068\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.22-00068","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

为了研究人间充质干细胞(hMSCs)成骨分化过程中的基因表达模式和相关生物学变化,我们下载了GSE37558数据集中4个未诱导的hMSC样本和12个成骨诱导样本在第2、8、12或25天的表达数据。筛选组间差异表达基因(DEGs),进行短时间序列表达挖掘(STEM)分析和加权基因共表达网络分析(WGCNA)。从GeneCards数据库中提取成骨分化相关基因。接下来,进行功能富集,构建蛋白-蛋白相互作用(PPI)和lncRNA-miRNA-mRNA网络。与未诱导的hMSC样品相比,成骨诱导样品在第2天、第8天、第12天和第25天的温度分别为163、341、447和537℃,呈持续升高趋势。从STEM、WGCNA和GeneCards数据库中,共筛选出107个与成骨分化相关的关键基因;这些基因在骨化、ecm受体相互作用、血管发育、软骨发育、骨矿化等生物过程以及Wnt信号通路和趋化因子信号通路中富集。PPI网络鉴定出四个枢纽基因,STAT5A、TWIST1、FOXO1和LEP。lncRNA-miRNA-mRNA网络揭示了STAT5A、fox01和LEP的调控轴。STAT5A和LEP分别有3个和2个调控轴。FOXO1的多个调控轴被发现,如MIR155HG-miR-223-FOXO1。本研究确定了可能在调控hMSCs成骨分化中发挥重要作用的候选关键靶点,为进一步研究其分子调控机制提供了新的信息。需要更多的实验来评估这些基因对hMSCs成骨分化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time series clustering analysis of genes during osteogenic differentiation of human mesenchymal stem cells.

To investigate the gene expression pattern and related biological changes during osteogenic differentiation of human mesenchymal stem cells (hMSCs), we downloaded expression data for four uninduced hMSC samples, and 12 osteogenic induction samples at day 2, 8, 12 or 25, in the GSE37558 dataset. Differentially expressed genes (DEGs) between groups were screened, followed by short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA). Osteogenic differentiation-related genes were extracted from the GeneCards database. Next, functional enrichment was performed, and protein-protein interaction (PPI) and lncRNA-miRNA-mRNA networks were constructed. Compared to uninduced hMSC samples, 163, 341, 447 and 537 DEGs were found in osteogenic induction samples at day 2, 8, 12 and 25, respectively, showing a sustainably increased trend. From STEM, WGCNA and the GeneCards database, a total of 107 key genes associated with osteogenic differentiation were screened; these genes were enriched in biological processes, such as ossification, ECM-receptor interaction, vasculature development, cartilage development and bone mineralization, as well as the Wnt signaling pathway and the chemokine signaling pathway. The PPI network identified four hub genes, STAT5A, TWIST1, FOXO1 and LEP. The lncRNA-miRNA-mRNA network revealed regulatory axes for STAT5A, FOXO1 and LEP. Three and two regulatory axes were found for STAT5A and LEP, respectively. Multiple regulatory axes for FOXO1 were found, such as MIR155HG-miR-223-FOXO1. This study identifies candidate key targets that may play important roles in regulating osteogenic differentiation of hMSCs, and provides novel information to further investigate the molecular regulation mechanism. More experiments are required to evaluate the effects of these genes on osteogenic differentiation of hMSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genetic systems
Genes & genetic systems 生物-生化与分子生物学
CiteScore
1.50
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Genes & Genetic Systems , formerly the Japanese Journal of Genetics , is published bimonthly by the Genetics Society of Japan.
期刊最新文献
Semi-dominant mutations in the gene encoding histidine kinase influences rice morphology. Asynchronous evolution of centromeric sequences across chromosomes in Pyricularia oryzae. The transposition of a heat-activated retrotransposon ONSEN resulted in changes in the hypocotyl elongation. Development of a TaqMan-based dosage analysis PCR assay for the molecular diagnosis of 22q11.2 deletion syndrome. Impact of late Quaternary climate change on the demographic history of Japanese field voles and hares revealed by mitochondrial cytochrome b sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1