{"title":"未折叠蛋白反应相关基因在肝细胞癌中的预后作用。","authors":"Shuqiao Zhang, Xinyu Li, Yilu Zheng, Hao Hu, Jiahui Liu, Shijun Zhang, Chunzhi Tang, Zhuomao Mo, Weihong Kuang","doi":"10.2174/1389203724666230816090504","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To reveal the prognostic role of unfolded protein response (UPR) -related genes in hepatocellular carcinoma (HCC).</p><p><strong>Background: </strong>Hepatocellular carcinoma is a genetically heterogeneous tumor, and the prediction of its prognosis remains a challenge. Studies elucidating the molecular mechanisms of UPR have rapidly increased. However, the UPR molecular subtype characteristics of the related genes in HCC progression have yet to be thoroughly studied.</p><p><strong>Objective: </strong>Conducting a comprehensive assessment of the prognostic signature of genes related to the UPR in patients with HCC can advance our understanding of the cellular processes contributing to the progression of HCC and offer innovative strategies in precise therapy.</p><p><strong>Methods: </strong>Based on the gene expression profiles associated with UPR in HCC, we explored the molecular subtypes mediated by UPR-related genes and constructed a UPR-related genes signature that could precisely predict the prognosis for HCC.</p><p><strong>Results: </strong>Using microarray data of HCC patients, differentially expressed UPR-related genes (DEGs) were discovered in malignancies and normal tissues. The HCC was classified into two molecular subtypes by the NMF algorithm based on DEGs modification of the UPR. Moreover, we developed a UPR-related model for predicting HCC patients' prognosis. The robustness of the UPR- related model was confirmed in external validation. Moreover, we analyzed immune responses in different risk groups. Analysis of immune functions revealed that Treg, Macrophages, aDCs, and MHC class-I were significantly up-regulated in high-risk HCC. At the same time, cytolytic activity and type I and II INF response were higher in a low-risk subgroup.</p><p><strong>Conclusion: </strong>This study identified two UPR molecular subtypes of HCC and developed a ten-gene HCC prognostic signature model (EXTL3, PPP2R5B, ZBTB17, CCT3, CCT4, CCT5, GRPEL2, HSP90AA1, PDRG1, and STC2), which can robustly forecast the progression of HCC.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"666-683"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognostic Role of Unfolded Protein Response-Related Genes in Hepatocellular Carcinoma.\",\"authors\":\"Shuqiao Zhang, Xinyu Li, Yilu Zheng, Hao Hu, Jiahui Liu, Shijun Zhang, Chunzhi Tang, Zhuomao Mo, Weihong Kuang\",\"doi\":\"10.2174/1389203724666230816090504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To reveal the prognostic role of unfolded protein response (UPR) -related genes in hepatocellular carcinoma (HCC).</p><p><strong>Background: </strong>Hepatocellular carcinoma is a genetically heterogeneous tumor, and the prediction of its prognosis remains a challenge. Studies elucidating the molecular mechanisms of UPR have rapidly increased. However, the UPR molecular subtype characteristics of the related genes in HCC progression have yet to be thoroughly studied.</p><p><strong>Objective: </strong>Conducting a comprehensive assessment of the prognostic signature of genes related to the UPR in patients with HCC can advance our understanding of the cellular processes contributing to the progression of HCC and offer innovative strategies in precise therapy.</p><p><strong>Methods: </strong>Based on the gene expression profiles associated with UPR in HCC, we explored the molecular subtypes mediated by UPR-related genes and constructed a UPR-related genes signature that could precisely predict the prognosis for HCC.</p><p><strong>Results: </strong>Using microarray data of HCC patients, differentially expressed UPR-related genes (DEGs) were discovered in malignancies and normal tissues. The HCC was classified into two molecular subtypes by the NMF algorithm based on DEGs modification of the UPR. Moreover, we developed a UPR-related model for predicting HCC patients' prognosis. The robustness of the UPR- related model was confirmed in external validation. Moreover, we analyzed immune responses in different risk groups. Analysis of immune functions revealed that Treg, Macrophages, aDCs, and MHC class-I were significantly up-regulated in high-risk HCC. At the same time, cytolytic activity and type I and II INF response were higher in a low-risk subgroup.</p><p><strong>Conclusion: </strong>This study identified two UPR molecular subtypes of HCC and developed a ten-gene HCC prognostic signature model (EXTL3, PPP2R5B, ZBTB17, CCT3, CCT4, CCT5, GRPEL2, HSP90AA1, PDRG1, and STC2), which can robustly forecast the progression of HCC.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"666-683\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389203724666230816090504\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230816090504","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Prognostic Role of Unfolded Protein Response-Related Genes in Hepatocellular Carcinoma.
Aims: To reveal the prognostic role of unfolded protein response (UPR) -related genes in hepatocellular carcinoma (HCC).
Background: Hepatocellular carcinoma is a genetically heterogeneous tumor, and the prediction of its prognosis remains a challenge. Studies elucidating the molecular mechanisms of UPR have rapidly increased. However, the UPR molecular subtype characteristics of the related genes in HCC progression have yet to be thoroughly studied.
Objective: Conducting a comprehensive assessment of the prognostic signature of genes related to the UPR in patients with HCC can advance our understanding of the cellular processes contributing to the progression of HCC and offer innovative strategies in precise therapy.
Methods: Based on the gene expression profiles associated with UPR in HCC, we explored the molecular subtypes mediated by UPR-related genes and constructed a UPR-related genes signature that could precisely predict the prognosis for HCC.
Results: Using microarray data of HCC patients, differentially expressed UPR-related genes (DEGs) were discovered in malignancies and normal tissues. The HCC was classified into two molecular subtypes by the NMF algorithm based on DEGs modification of the UPR. Moreover, we developed a UPR-related model for predicting HCC patients' prognosis. The robustness of the UPR- related model was confirmed in external validation. Moreover, we analyzed immune responses in different risk groups. Analysis of immune functions revealed that Treg, Macrophages, aDCs, and MHC class-I were significantly up-regulated in high-risk HCC. At the same time, cytolytic activity and type I and II INF response were higher in a low-risk subgroup.
Conclusion: This study identified two UPR molecular subtypes of HCC and developed a ten-gene HCC prognostic signature model (EXTL3, PPP2R5B, ZBTB17, CCT3, CCT4, CCT5, GRPEL2, HSP90AA1, PDRG1, and STC2), which can robustly forecast the progression of HCC.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.