{"title":"基于混合现实的手术导航系统在颅颌面创伤骨重建中的应用。","authors":"Chengzhong Lin, Yong Zhang, Shao Dong, Jinyang Wu, Chuxi Zhang, Xinjun Wan, Shilei Zhang","doi":"10.7518/hxkq.2022.06.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to build a surgical navigation system based on mixed reality (MR) and optical positioning technique and evaluate its clinical applicability in craniomaxillofacial trauma bone reconstruction. Me-thods We first integrated the software and hardware platforms of the MR-based surgical navigation system and explored the system workflow. The systematic error, target registration error, and osteotomy application error of the system were then analyzed via 3D printed skull model experiment. The feasibility of the MR-based surgical navigation system in craniomaxillofacial trauma bone reconstruction was verified via zygomatico-maxillary complex (ZMC) reduction experiment of the skull model and preliminary clinical study.</p><p><strong>Results: </strong>The system error of this MR-based surgical navigation system was 1.23 mm±0.52 mm, the target registration error was 2.83 mm±1.18 mm, and the osteotomy application error was 3.13 mm±1.66 mm. Virtual surgical planning and the reduction of the ZMC model were successfully conducted. In addition, with the guidance of the MR-based navigation system, the frontal bone defect was successfully reconstructed, and the clinical outcome was satisfactory.</p><p><strong>Conclusions: </strong>The MR-based surgical navigation system has its advantages in virtual reality fusion effect and dynamic navigation stability. It provides a new method for doctor-patient communications, education, preoperative planning, and intraoperative navigation in craniomaxillofacial surgery.</p>","PeriodicalId":35800,"journal":{"name":"华西口腔医学杂志","volume":"40 6","pages":"676-684"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763953/pdf/wcjs-40-06-676.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of mixed reality-based surgical navigation system in craniomaxillofacial trauma bone reconstruction.\",\"authors\":\"Chengzhong Lin, Yong Zhang, Shao Dong, Jinyang Wu, Chuxi Zhang, Xinjun Wan, Shilei Zhang\",\"doi\":\"10.7518/hxkq.2022.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to build a surgical navigation system based on mixed reality (MR) and optical positioning technique and evaluate its clinical applicability in craniomaxillofacial trauma bone reconstruction. Me-thods We first integrated the software and hardware platforms of the MR-based surgical navigation system and explored the system workflow. The systematic error, target registration error, and osteotomy application error of the system were then analyzed via 3D printed skull model experiment. The feasibility of the MR-based surgical navigation system in craniomaxillofacial trauma bone reconstruction was verified via zygomatico-maxillary complex (ZMC) reduction experiment of the skull model and preliminary clinical study.</p><p><strong>Results: </strong>The system error of this MR-based surgical navigation system was 1.23 mm±0.52 mm, the target registration error was 2.83 mm±1.18 mm, and the osteotomy application error was 3.13 mm±1.66 mm. Virtual surgical planning and the reduction of the ZMC model were successfully conducted. In addition, with the guidance of the MR-based navigation system, the frontal bone defect was successfully reconstructed, and the clinical outcome was satisfactory.</p><p><strong>Conclusions: </strong>The MR-based surgical navigation system has its advantages in virtual reality fusion effect and dynamic navigation stability. It provides a new method for doctor-patient communications, education, preoperative planning, and intraoperative navigation in craniomaxillofacial surgery.</p>\",\"PeriodicalId\":35800,\"journal\":{\"name\":\"华西口腔医学杂志\",\"volume\":\"40 6\",\"pages\":\"676-684\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763953/pdf/wcjs-40-06-676.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"华西口腔医学杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7518/hxkq.2022.06.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"华西口腔医学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7518/hxkq.2022.06.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Application of mixed reality-based surgical navigation system in craniomaxillofacial trauma bone reconstruction.
Objectives: This study aimed to build a surgical navigation system based on mixed reality (MR) and optical positioning technique and evaluate its clinical applicability in craniomaxillofacial trauma bone reconstruction. Me-thods We first integrated the software and hardware platforms of the MR-based surgical navigation system and explored the system workflow. The systematic error, target registration error, and osteotomy application error of the system were then analyzed via 3D printed skull model experiment. The feasibility of the MR-based surgical navigation system in craniomaxillofacial trauma bone reconstruction was verified via zygomatico-maxillary complex (ZMC) reduction experiment of the skull model and preliminary clinical study.
Results: The system error of this MR-based surgical navigation system was 1.23 mm±0.52 mm, the target registration error was 2.83 mm±1.18 mm, and the osteotomy application error was 3.13 mm±1.66 mm. Virtual surgical planning and the reduction of the ZMC model were successfully conducted. In addition, with the guidance of the MR-based navigation system, the frontal bone defect was successfully reconstructed, and the clinical outcome was satisfactory.
Conclusions: The MR-based surgical navigation system has its advantages in virtual reality fusion effect and dynamic navigation stability. It provides a new method for doctor-patient communications, education, preoperative planning, and intraoperative navigation in craniomaxillofacial surgery.
期刊介绍:
West China Journal of Stomatology (WCJS, pISSN 1000-1182, eISSN 2618-0456, CN 51-1169/R), published bimonthly, is a peer-reviewed Open Access journal, hosted by Sichuan university and Ministry of Education of the People's Republic of China. WCJS was established in 1983 and indexed in Medline/Pubmed, SCOPUS, EBSCO, Chemical Abstract(CA), CNKI, WANFANG Data, etc.