在马达加斯加捕获的野生家鼠(小家鼠)的全基因组测序分析。

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genetic systems Pub Date : 2022-12-17 DOI:10.1266/ggs.22-00090
Kazumichi Fujiwara, Marie C Ranorosoa, Satoshi D Ohdachi, Satoru Arai, Yuki Sakuma, Hitoshi Suzuki, Naoki Osada
{"title":"在马达加斯加捕获的野生家鼠(小家鼠)的全基因组测序分析。","authors":"Kazumichi Fujiwara,&nbsp;Marie C Ranorosoa,&nbsp;Satoshi D Ohdachi,&nbsp;Satoru Arai,&nbsp;Yuki Sakuma,&nbsp;Hitoshi Suzuki,&nbsp;Naoki Osada","doi":"10.1266/ggs.22-00090","DOIUrl":null,"url":null,"abstract":"<p><p>In Madagascar, the house mouse (Mus musculus) is widely believed to have colonized with human activities and is now one of the most abundant rodents on the island. However, its genetic background at the genomic level remains unclear, and clarifying this would help us to infer the timing of introduction and route of migration. In this study, we determined the whole-genome sequences of five Madagascar house mice captured from an inland location in Madagascar. We examined the genetic background of samples by analyzing the mitochondrial and autosomal genomes. We confirmed that the mitochondrial genome lineages of collected samples formed a single clade placed at one of the most basal positions in the Mus musculus species. Autosomal genomic sequences revealed that these samples are most closely related to the subspecies M. m. castaneus (CAS), but also contain a genetic component of the subspecies M. m. domesticus (DOM). The signature of a strong population bottleneck 1,000-3,000 years ago was observed in both mitochondrial and autosomal genomic data. In a comparison with global samples of M. musculus, the Madagascar samples showed strong genetic affinity to many CAS samples across a wide range of Indian Ocean coastal and insular regions, with divergence time estimated as around 4,000 years ago. These findings support the proposition that the ancestors of these animals started to colonize the island with human agricultural activity and experienced a complex history during their establishment.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Whole-genome sequencing analysis of wild house mice (Mus musculus) captured in Madagascar.\",\"authors\":\"Kazumichi Fujiwara,&nbsp;Marie C Ranorosoa,&nbsp;Satoshi D Ohdachi,&nbsp;Satoru Arai,&nbsp;Yuki Sakuma,&nbsp;Hitoshi Suzuki,&nbsp;Naoki Osada\",\"doi\":\"10.1266/ggs.22-00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Madagascar, the house mouse (Mus musculus) is widely believed to have colonized with human activities and is now one of the most abundant rodents on the island. However, its genetic background at the genomic level remains unclear, and clarifying this would help us to infer the timing of introduction and route of migration. In this study, we determined the whole-genome sequences of five Madagascar house mice captured from an inland location in Madagascar. We examined the genetic background of samples by analyzing the mitochondrial and autosomal genomes. We confirmed that the mitochondrial genome lineages of collected samples formed a single clade placed at one of the most basal positions in the Mus musculus species. Autosomal genomic sequences revealed that these samples are most closely related to the subspecies M. m. castaneus (CAS), but also contain a genetic component of the subspecies M. m. domesticus (DOM). The signature of a strong population bottleneck 1,000-3,000 years ago was observed in both mitochondrial and autosomal genomic data. In a comparison with global samples of M. musculus, the Madagascar samples showed strong genetic affinity to many CAS samples across a wide range of Indian Ocean coastal and insular regions, with divergence time estimated as around 4,000 years ago. These findings support the proposition that the ancestors of these animals started to colonize the island with human agricultural activity and experienced a complex history during their establishment.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.22-00090\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.22-00090","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在马达加斯加,家鼠(小家鼠)被广泛认为是人类活动的殖民地,现在是岛上数量最多的啮齿动物之一。然而,它在基因组水平上的遗传背景仍不清楚,澄清这一点将有助于我们推断引入的时间和迁徙路线。在这项研究中,我们确定了从马达加斯加内陆地区捕获的5只马达加斯加家鼠的全基因组序列。我们通过分析线粒体和常染色体基因组来检查样本的遗传背景。我们证实,收集样本的线粒体基因组谱系形成了一个单一的分支,位于小家鼠物种中最基础的位置之一。常染色体基因组序列显示,这些样本与亚种M. M. castaneus (CAS)关系最密切,但也含有亚种M. M. domesticus (DOM)的遗传成分。在线粒体和常染色体基因组数据中观察到1000 - 3000年前强烈的人口瓶颈的特征。在与全球M. musculus样本的比较中,马达加斯加样本与印度洋沿海和岛屿地区的许多CAS样本显示出很强的遗传亲和力,分化时间估计在4000年前左右。这些发现支持了这样一种观点,即这些动物的祖先随着人类的农业活动开始在岛上定居,并在其建立过程中经历了复杂的历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whole-genome sequencing analysis of wild house mice (Mus musculus) captured in Madagascar.

In Madagascar, the house mouse (Mus musculus) is widely believed to have colonized with human activities and is now one of the most abundant rodents on the island. However, its genetic background at the genomic level remains unclear, and clarifying this would help us to infer the timing of introduction and route of migration. In this study, we determined the whole-genome sequences of five Madagascar house mice captured from an inland location in Madagascar. We examined the genetic background of samples by analyzing the mitochondrial and autosomal genomes. We confirmed that the mitochondrial genome lineages of collected samples formed a single clade placed at one of the most basal positions in the Mus musculus species. Autosomal genomic sequences revealed that these samples are most closely related to the subspecies M. m. castaneus (CAS), but also contain a genetic component of the subspecies M. m. domesticus (DOM). The signature of a strong population bottleneck 1,000-3,000 years ago was observed in both mitochondrial and autosomal genomic data. In a comparison with global samples of M. musculus, the Madagascar samples showed strong genetic affinity to many CAS samples across a wide range of Indian Ocean coastal and insular regions, with divergence time estimated as around 4,000 years ago. These findings support the proposition that the ancestors of these animals started to colonize the island with human agricultural activity and experienced a complex history during their establishment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genetic systems
Genes & genetic systems 生物-生化与分子生物学
CiteScore
1.50
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Genes & Genetic Systems , formerly the Japanese Journal of Genetics , is published bimonthly by the Genetics Society of Japan.
期刊最新文献
Development and characterization of expressed sequence tag-simple sequence repeat markers for the near-threatened halophyte, Limonium tetragonum (Thunb.) A. A. Bullock (Plumbaginaceae). Next-generation sequencing analysis with a population-specific human reference genome. Mutagenic effects of ultraviolet radiation and trimethyl psoralen in mycoplasma toward a minimal genome. FOXM1 derived from Triple negative breast cancer exosomes promotes cancer progression by activating IDO1 transcription in macrophages to suppress ferroptosis and induce M2 polarization of Tumor-associated macrophages. Identification of abiotic stress-responsive genes: a genome-wide analysis of the cytokinin response regulator gene family in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1