{"title":"利用非整合病毒重编程载体从血液中产生和扩增人诱导多能干细胞","authors":"Arun Sharma, Michael Mücke, Christine E. Seidman","doi":"10.1002/cpmb.58","DOIUrl":null,"url":null,"abstract":"<p>We describe a method to transform blood lymphocytes into human-induced pluripotent stem cells by delivering four transcription factors with a non-integrative virus. Using human peripheral blood mononuclear cells (PBMCs) as the source cell type for hiPSC reprogramming is advantageous since blood samples are rapidly and safely obtained from nearly-all subjects. Reprogramming factors needed to make hiPSCs are introduced by infecting the PBMCs with non-integrating Sendai virus vectors. Reprogrammed cells can subsequently be quickly expanded for downstream use. In this unit, we present current protocols for the isolation of PBMCs from a small sample of human blood and subsequent viral reprogramming and expansion of PBMCs into hiPSCs. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":10734,"journal":{"name":"Current Protocols in Molecular Biology","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmb.58","citationCount":"10","resultStr":"{\"title\":\"Human Induced Pluripotent Stem Cell Production and Expansion from Blood using a Non-Integrating Viral Reprogramming Vector\",\"authors\":\"Arun Sharma, Michael Mücke, Christine E. Seidman\",\"doi\":\"10.1002/cpmb.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe a method to transform blood lymphocytes into human-induced pluripotent stem cells by delivering four transcription factors with a non-integrative virus. Using human peripheral blood mononuclear cells (PBMCs) as the source cell type for hiPSC reprogramming is advantageous since blood samples are rapidly and safely obtained from nearly-all subjects. Reprogramming factors needed to make hiPSCs are introduced by infecting the PBMCs with non-integrating Sendai virus vectors. Reprogrammed cells can subsequently be quickly expanded for downstream use. In this unit, we present current protocols for the isolation of PBMCs from a small sample of human blood and subsequent viral reprogramming and expansion of PBMCs into hiPSCs. © 2018 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":10734,\"journal\":{\"name\":\"Current Protocols in Molecular Biology\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmb.58\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10