Didier Collard, Lennart van de Velde, Valerie E Stegehuis, Ronak Delewi, Marcel A M Beijk, IJsbrand A J Zijlstra, Robbert J de Winter, Liffert Vogt, Bert-Jan H van den Born
{"title":"利用侵入性血压和血流速度测量评估人类肾脏交感神经控制。","authors":"Didier Collard, Lennart van de Velde, Valerie E Stegehuis, Ronak Delewi, Marcel A M Beijk, IJsbrand A J Zijlstra, Robbert J de Winter, Liffert Vogt, Bert-Jan H van den Born","doi":"10.1152/ajprenal.00031.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Renal sympathetic innervation is important in the control of renal and systemic hemodynamics and is a target for pharmacological and catheter-based therapies. The effect of a physiological sympathetic stimulus using static handgrip exercise on renal hemodynamics and intraglomerular pressure in humans is unknown. We recorded renal arterial pressure and flow velocity in patients with a clinical indication for coronary or peripheral angiography using a sensor-equipped guidewire during baseline, handgrip, rest, and hyperemia following intrarenal dopamine (30 μg/kg). Changes in perfusion pressure were expressed as the change in mean arterial pressure, and changes in flow were expressed as a percentage with respect to baseline. Intraglomerular pressure was estimated using a Windkessel model. A total of 18 patients (61% male and 39% female) with a median age of 57 yr (range: 27-85 yr) with successful measurements were included. During static handgrip, renal arterial pressure increased by 15.2 mmHg (range: 4.2-53.0 mmHg), whereas flow decreased by 11.2%, but with a large variation between individuals (range: -13.4 to 49.8). Intraglomerular pressure increased by 4.2 mmHg (range: -3.9 to 22.1 mmHg). Flow velocity under resting conditions remained stable, with a median of 100.6% (range: 82.3%-114.6%) compared with baseline. During hyperemia, maximal flow was 180% (range: 111%-281%), whereas intraglomerular pressure decreased by 9.6 mmHg (interquartile range: 4.8 to 13.9 mmHg). Changes in renal pressure and flow during handgrip exercise were significantly correlated (ρ = -0.68, <i>P</i> = 0.002). Measurement of renal arterial pressure and flow velocity during handgrip exercise allows the identification of patients with higher and lower sympathetic control of renal perfusion. This suggests that hemodynamic measurements may be useful to assess the response to therapeutic interventions aimed at altering renal sympathetic control.<b>NEW & NOTEWORTHY</b> Renal sympathetic innervation is important in the homeostasis of systemic and renal hemodynamics. We showed that renal arterial pressure significantly increased and that flow decreased during static handgrip exercise using direct renal arterial pressure and flow measurements in humans, but with a large difference between individuals. These findings may be useful for future studies aimed to assess the effect of interventions that influence renal sympathetic control.</p>","PeriodicalId":7588,"journal":{"name":"American Journal of Physiology-renal Physiology","volume":"325 3","pages":"F263-F270"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of renal sympathetic control using invasive pressure and flow velocity measurements in humans.\",\"authors\":\"Didier Collard, Lennart van de Velde, Valerie E Stegehuis, Ronak Delewi, Marcel A M Beijk, IJsbrand A J Zijlstra, Robbert J de Winter, Liffert Vogt, Bert-Jan H van den Born\",\"doi\":\"10.1152/ajprenal.00031.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renal sympathetic innervation is important in the control of renal and systemic hemodynamics and is a target for pharmacological and catheter-based therapies. The effect of a physiological sympathetic stimulus using static handgrip exercise on renal hemodynamics and intraglomerular pressure in humans is unknown. We recorded renal arterial pressure and flow velocity in patients with a clinical indication for coronary or peripheral angiography using a sensor-equipped guidewire during baseline, handgrip, rest, and hyperemia following intrarenal dopamine (30 μg/kg). Changes in perfusion pressure were expressed as the change in mean arterial pressure, and changes in flow were expressed as a percentage with respect to baseline. Intraglomerular pressure was estimated using a Windkessel model. A total of 18 patients (61% male and 39% female) with a median age of 57 yr (range: 27-85 yr) with successful measurements were included. During static handgrip, renal arterial pressure increased by 15.2 mmHg (range: 4.2-53.0 mmHg), whereas flow decreased by 11.2%, but with a large variation between individuals (range: -13.4 to 49.8). Intraglomerular pressure increased by 4.2 mmHg (range: -3.9 to 22.1 mmHg). Flow velocity under resting conditions remained stable, with a median of 100.6% (range: 82.3%-114.6%) compared with baseline. During hyperemia, maximal flow was 180% (range: 111%-281%), whereas intraglomerular pressure decreased by 9.6 mmHg (interquartile range: 4.8 to 13.9 mmHg). Changes in renal pressure and flow during handgrip exercise were significantly correlated (ρ = -0.68, <i>P</i> = 0.002). Measurement of renal arterial pressure and flow velocity during handgrip exercise allows the identification of patients with higher and lower sympathetic control of renal perfusion. This suggests that hemodynamic measurements may be useful to assess the response to therapeutic interventions aimed at altering renal sympathetic control.<b>NEW & NOTEWORTHY</b> Renal sympathetic innervation is important in the homeostasis of systemic and renal hemodynamics. We showed that renal arterial pressure significantly increased and that flow decreased during static handgrip exercise using direct renal arterial pressure and flow measurements in humans, but with a large difference between individuals. These findings may be useful for future studies aimed to assess the effect of interventions that influence renal sympathetic control.</p>\",\"PeriodicalId\":7588,\"journal\":{\"name\":\"American Journal of Physiology-renal Physiology\",\"volume\":\"325 3\",\"pages\":\"F263-F270\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physiology-renal Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00031.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology-renal Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajprenal.00031.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Assessment of renal sympathetic control using invasive pressure and flow velocity measurements in humans.
Renal sympathetic innervation is important in the control of renal and systemic hemodynamics and is a target for pharmacological and catheter-based therapies. The effect of a physiological sympathetic stimulus using static handgrip exercise on renal hemodynamics and intraglomerular pressure in humans is unknown. We recorded renal arterial pressure and flow velocity in patients with a clinical indication for coronary or peripheral angiography using a sensor-equipped guidewire during baseline, handgrip, rest, and hyperemia following intrarenal dopamine (30 μg/kg). Changes in perfusion pressure were expressed as the change in mean arterial pressure, and changes in flow were expressed as a percentage with respect to baseline. Intraglomerular pressure was estimated using a Windkessel model. A total of 18 patients (61% male and 39% female) with a median age of 57 yr (range: 27-85 yr) with successful measurements were included. During static handgrip, renal arterial pressure increased by 15.2 mmHg (range: 4.2-53.0 mmHg), whereas flow decreased by 11.2%, but with a large variation between individuals (range: -13.4 to 49.8). Intraglomerular pressure increased by 4.2 mmHg (range: -3.9 to 22.1 mmHg). Flow velocity under resting conditions remained stable, with a median of 100.6% (range: 82.3%-114.6%) compared with baseline. During hyperemia, maximal flow was 180% (range: 111%-281%), whereas intraglomerular pressure decreased by 9.6 mmHg (interquartile range: 4.8 to 13.9 mmHg). Changes in renal pressure and flow during handgrip exercise were significantly correlated (ρ = -0.68, P = 0.002). Measurement of renal arterial pressure and flow velocity during handgrip exercise allows the identification of patients with higher and lower sympathetic control of renal perfusion. This suggests that hemodynamic measurements may be useful to assess the response to therapeutic interventions aimed at altering renal sympathetic control.NEW & NOTEWORTHY Renal sympathetic innervation is important in the homeostasis of systemic and renal hemodynamics. We showed that renal arterial pressure significantly increased and that flow decreased during static handgrip exercise using direct renal arterial pressure and flow measurements in humans, but with a large difference between individuals. These findings may be useful for future studies aimed to assess the effect of interventions that influence renal sympathetic control.
期刊介绍:
The American Journal of Physiology - Renal Physiology publishes original manuscripts on timely topics in both basic science and clinical research. Published articles address a broad range of subjects relating to the kidney and urinary tract, and may involve human or animal models, individual cell types, and isolated membrane systems. Also covered are the pathophysiological basis of renal disease processes, regulation of body fluids, and clinical research that provides mechanistic insights. Studies of renal function may be conducted using a wide range of approaches, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, as well as physiological and clinical methodologies.