断电和仪器故障期间斑马鱼外壳温度的建模。

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2023-08-01 DOI:10.1089/zeb.2023.0004
Ilkka Paatero
{"title":"断电和仪器故障期间斑马鱼外壳温度的建模。","authors":"Ilkka Paatero","doi":"10.1089/zeb.2023.0004","DOIUrl":null,"url":null,"abstract":"<p><p>Power outages can happen anywhere and anytime for various reasons. This threat affects also scientific work of biologists. Especially problematic area is aquatic animal husbandry, where life support of the animals is dependent on continuous electricity supply and years of scientific work may depend on the well-being of these animal stocks. Therefore, tools to estimate and control these risks are needed. In this study, I have used modeling to estimate aquarium water temperature changes during power outages and constructed simplified models for zebrafish aquaria. A calculation worksheet is also provided to help to model kinetics of water temperature changes in zebrafish facilities.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Zebrafish Housing Temperatures During Power Outage and Instrument Failure.\",\"authors\":\"Ilkka Paatero\",\"doi\":\"10.1089/zeb.2023.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Power outages can happen anywhere and anytime for various reasons. This threat affects also scientific work of biologists. Especially problematic area is aquatic animal husbandry, where life support of the animals is dependent on continuous electricity supply and years of scientific work may depend on the well-being of these animal stocks. Therefore, tools to estimate and control these risks are needed. In this study, I have used modeling to estimate aquarium water temperature changes during power outages and constructed simplified models for zebrafish aquaria. A calculation worksheet is also provided to help to model kinetics of water temperature changes in zebrafish facilities.</p>\",\"PeriodicalId\":23872,\"journal\":{\"name\":\"Zebrafish\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zebrafish\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2023.0004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2023.0004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于各种原因,停电可能随时随地发生。这种威胁也影响生物学家的科学工作。特别有问题的领域是水生畜牧业,动物的生命支持依赖于持续的电力供应,多年的科学工作可能取决于这些动物种群的健康状况。因此,需要评估和控制这些风险的工具。在这项研究中,我使用建模来估计停电期间水族馆水温的变化,并为斑马鱼水族馆构建了简化模型。还提供了一份计算工作表,以帮助对斑马鱼设施中水温变化的动力学进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of Zebrafish Housing Temperatures During Power Outage and Instrument Failure.

Power outages can happen anywhere and anytime for various reasons. This threat affects also scientific work of biologists. Especially problematic area is aquatic animal husbandry, where life support of the animals is dependent on continuous electricity supply and years of scientific work may depend on the well-being of these animal stocks. Therefore, tools to estimate and control these risks are needed. In this study, I have used modeling to estimate aquarium water temperature changes during power outages and constructed simplified models for zebrafish aquaria. A calculation worksheet is also provided to help to model kinetics of water temperature changes in zebrafish facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1