{"title":"凡纳滨对虾池塘沉积物中可培养放线菌作为细胞外蛋白水解酶和脂肪水解酶的潜力。","authors":"Diah Ayuningrum, Aninditia Sabdaningsih, Oktavianto Eko Jati","doi":"10.21315/tlsr2022.33.3.10","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes are catalysts that can increase the reaction time of a biochemical process. Hydrolytic enzymes have a pivotal role in degrading organic waste in both terrestrial and aquatic environments. The aims of this study were (1) to investigate the ability of actinobacteria isolated from <i>Litopenaeus vannamei</i> pond sediment to produce proteolytic and lipolytic enzymes, (2) to identify promising candidates using 16S rRNA gene amplification, and (3) to construct a phylogenetic tree based on the 16S rRNA genes. A skim milk agar medium was used in the preliminary experiment of the proteolytic assay, and a Tween 20/80 medium was used in the lipolytic assay. Fifteen and 20 (out of 40) actinobacterial isolates showed great potential for proteolytic and lipolytic activities, respectively. Furthermore, four actinobacteria isolates produced both enzyme types with proteolytic and lipolytic index scores of 1-6.5. The most promising candidates were SA 2.2 (IM8), SC 2.1 (IM6), SD 1.5 (IM6) and SE 1.1 (IM8). BLAST homology results showed a high similarity between the actinobacteria isolates and <i>Streptomyces verucosisporus, S. mangrovicola, S. barkulensis</i> and <i>Nocardiopsis lucentensis</i>, respectively. Therefore, actinobacteria from <i>Litopenaeus vannamei</i> pond sediment are high-potential proteolytic and lipolytic enzyme producers.</p>","PeriodicalId":23477,"journal":{"name":"Tropical life sciences research","volume":"33 3","pages":"165-192"},"PeriodicalIF":1.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747105/pdf/","citationCount":"2","resultStr":"{\"title\":\"The Potential of Phylogenetically Diverse Culturable Actinobacteria from <i>Litopenaeus vannamei</i> Pond Sediment as Extracellular Proteolytic and Lipolytic Enzyme Producers.\",\"authors\":\"Diah Ayuningrum, Aninditia Sabdaningsih, Oktavianto Eko Jati\",\"doi\":\"10.21315/tlsr2022.33.3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymes are catalysts that can increase the reaction time of a biochemical process. Hydrolytic enzymes have a pivotal role in degrading organic waste in both terrestrial and aquatic environments. The aims of this study were (1) to investigate the ability of actinobacteria isolated from <i>Litopenaeus vannamei</i> pond sediment to produce proteolytic and lipolytic enzymes, (2) to identify promising candidates using 16S rRNA gene amplification, and (3) to construct a phylogenetic tree based on the 16S rRNA genes. A skim milk agar medium was used in the preliminary experiment of the proteolytic assay, and a Tween 20/80 medium was used in the lipolytic assay. Fifteen and 20 (out of 40) actinobacterial isolates showed great potential for proteolytic and lipolytic activities, respectively. Furthermore, four actinobacteria isolates produced both enzyme types with proteolytic and lipolytic index scores of 1-6.5. The most promising candidates were SA 2.2 (IM8), SC 2.1 (IM6), SD 1.5 (IM6) and SE 1.1 (IM8). BLAST homology results showed a high similarity between the actinobacteria isolates and <i>Streptomyces verucosisporus, S. mangrovicola, S. barkulensis</i> and <i>Nocardiopsis lucentensis</i>, respectively. Therefore, actinobacteria from <i>Litopenaeus vannamei</i> pond sediment are high-potential proteolytic and lipolytic enzyme producers.</p>\",\"PeriodicalId\":23477,\"journal\":{\"name\":\"Tropical life sciences research\",\"volume\":\"33 3\",\"pages\":\"165-192\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747105/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical life sciences research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/tlsr2022.33.3.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical life sciences research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/tlsr2022.33.3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
The Potential of Phylogenetically Diverse Culturable Actinobacteria from Litopenaeus vannamei Pond Sediment as Extracellular Proteolytic and Lipolytic Enzyme Producers.
Enzymes are catalysts that can increase the reaction time of a biochemical process. Hydrolytic enzymes have a pivotal role in degrading organic waste in both terrestrial and aquatic environments. The aims of this study were (1) to investigate the ability of actinobacteria isolated from Litopenaeus vannamei pond sediment to produce proteolytic and lipolytic enzymes, (2) to identify promising candidates using 16S rRNA gene amplification, and (3) to construct a phylogenetic tree based on the 16S rRNA genes. A skim milk agar medium was used in the preliminary experiment of the proteolytic assay, and a Tween 20/80 medium was used in the lipolytic assay. Fifteen and 20 (out of 40) actinobacterial isolates showed great potential for proteolytic and lipolytic activities, respectively. Furthermore, four actinobacteria isolates produced both enzyme types with proteolytic and lipolytic index scores of 1-6.5. The most promising candidates were SA 2.2 (IM8), SC 2.1 (IM6), SD 1.5 (IM6) and SE 1.1 (IM8). BLAST homology results showed a high similarity between the actinobacteria isolates and Streptomyces verucosisporus, S. mangrovicola, S. barkulensis and Nocardiopsis lucentensis, respectively. Therefore, actinobacteria from Litopenaeus vannamei pond sediment are high-potential proteolytic and lipolytic enzyme producers.
期刊介绍:
Tropical Life Sciences Research (TLSR) formerly known as Journal of Bioscience seeks to publish relevant ideas and knowledge addressing vital life sciences issues in the tropical region. The Journal’s scope is interdisciplinary in nature and covers any aspects related to issues on life sciences especially from the field of biochemistry, microbiology, biotechnology and animal, plant, environmental, biomedical and pharmaceutical sciences. TLSR practices double blind peer review system to ensure and maintain the good quality of articles published in this journal. Two issues are published annually in printed and electronic form. TLSR also accepts review articles, experimental papers and short communications. The Chief Editor would like to invite researchers to use this journal as a mean to rapidly promote their research findings.