Tao Zhou, Guoqing Bai, Yiheng Hu, Markus Ruhsam, Yanci Yang, Yuemei Zhao
{"title":"药用植物大叶龙胆的基因组组装为环烯醚萜类化合物的基因组进化和生物合成提供了新的见解。","authors":"Tao Zhou, Guoqing Bai, Yiheng Hu, Markus Ruhsam, Yanci Yang, Yuemei Zhao","doi":"10.1093/dnares/dsac034","DOIUrl":null,"url":null,"abstract":"<p><p>Gentiana macrophylla is a perennial herb in the Gentianaceae family, whose dried roots are used in traditional Chinese medicine. Here, we assembled a chromosome-level genome of G. macrophylla using a combination of Nanopore, Illumina, and Hi-C scaffolding approaches. The final genome size was ~1.79 Gb (contig N50 = 720.804 kb), and 98.89% of the genome sequences were anchored on 13 pseudochromosomes (scaffold N50 = 122.73 Mb). The genome contained 55,337 protein-coding genes, and 73.47% of the assemblies were repetitive sequences. Genome evolution analysis indicated that G. macrophylla underwent two rounds of whole-genome duplication after the core eudicot γ genome triplication event. We further identified candidate genes related to the biosynthesis of iridoids, and the corresponding gene families mostly expanded in G. macrophylla. In addition, we found that root-specific genes are enriched in pathways involved in defense responses, which may greatly improve the biological adaptability of G. macrophylla. Phylogenomic analyses showed a sister relationship of asterids and rosids, and all Gentianales species formed a monophyletic group. Our study contributes to the understanding of genome evolution and active component biosynthesis in G. macrophylla and provides important genomic resource for the genetic improvement and breeding of G. macrophylla.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"29 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/92/dsac034.PMC9724787.pdf","citationCount":"6","resultStr":"{\"title\":\"De novo genome assembly of the medicinal plant Gentiana macrophylla provides insights into the genomic evolution and biosynthesis of iridoids.\",\"authors\":\"Tao Zhou, Guoqing Bai, Yiheng Hu, Markus Ruhsam, Yanci Yang, Yuemei Zhao\",\"doi\":\"10.1093/dnares/dsac034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gentiana macrophylla is a perennial herb in the Gentianaceae family, whose dried roots are used in traditional Chinese medicine. Here, we assembled a chromosome-level genome of G. macrophylla using a combination of Nanopore, Illumina, and Hi-C scaffolding approaches. The final genome size was ~1.79 Gb (contig N50 = 720.804 kb), and 98.89% of the genome sequences were anchored on 13 pseudochromosomes (scaffold N50 = 122.73 Mb). The genome contained 55,337 protein-coding genes, and 73.47% of the assemblies were repetitive sequences. Genome evolution analysis indicated that G. macrophylla underwent two rounds of whole-genome duplication after the core eudicot γ genome triplication event. We further identified candidate genes related to the biosynthesis of iridoids, and the corresponding gene families mostly expanded in G. macrophylla. In addition, we found that root-specific genes are enriched in pathways involved in defense responses, which may greatly improve the biological adaptability of G. macrophylla. Phylogenomic analyses showed a sister relationship of asterids and rosids, and all Gentianales species formed a monophyletic group. Our study contributes to the understanding of genome evolution and active component biosynthesis in G. macrophylla and provides important genomic resource for the genetic improvement and breeding of G. macrophylla.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/92/dsac034.PMC9724787.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsac034\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsac034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
De novo genome assembly of the medicinal plant Gentiana macrophylla provides insights into the genomic evolution and biosynthesis of iridoids.
Gentiana macrophylla is a perennial herb in the Gentianaceae family, whose dried roots are used in traditional Chinese medicine. Here, we assembled a chromosome-level genome of G. macrophylla using a combination of Nanopore, Illumina, and Hi-C scaffolding approaches. The final genome size was ~1.79 Gb (contig N50 = 720.804 kb), and 98.89% of the genome sequences were anchored on 13 pseudochromosomes (scaffold N50 = 122.73 Mb). The genome contained 55,337 protein-coding genes, and 73.47% of the assemblies were repetitive sequences. Genome evolution analysis indicated that G. macrophylla underwent two rounds of whole-genome duplication after the core eudicot γ genome triplication event. We further identified candidate genes related to the biosynthesis of iridoids, and the corresponding gene families mostly expanded in G. macrophylla. In addition, we found that root-specific genes are enriched in pathways involved in defense responses, which may greatly improve the biological adaptability of G. macrophylla. Phylogenomic analyses showed a sister relationship of asterids and rosids, and all Gentianales species formed a monophyletic group. Our study contributes to the understanding of genome evolution and active component biosynthesis in G. macrophylla and provides important genomic resource for the genetic improvement and breeding of G. macrophylla.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.