{"title":"载药高分子颗粒的喷雾干燥和纳米喷雾干燥制备方法。","authors":"Dominik Strojewski, Anna Krupa","doi":"10.17219/pim/152230","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, benefits and drawbacks of the process of spray drying and nano spray drying with regard to the manufacturing of polymeric particles for pharmaceutical applications are discussed. Spray drying has been used for many years in the food, chemical and pharmaceutical industries for converting liquids into solids, in order to form products of uniform appearance. The construction of spray dryer enables to atomize the liquid into small droplets, which ensures a large surface area for heat and mass transfer, and significantly shortens the processing. Each droplet dries to an individual solid microparticle of characteristic features that can be tailored by optimizing formulation variables and critical process parameters. Since spray drying technology is easy to scale up and can be used for drying almost any drug in a solution or suspension, there are numerous examples of products in clinical use, in which this process has been successfully applied to improve drug stability, enhance bioavailability or control its release rate. In recent years, nano spray drying technology has been proposed as a method for lab-scale manufacturing of nanoparticles. Such an approach is of particular interest at early stages of drug development, when a small amount of new chemical entities is available. Here, the nebulization technique is used for feed atomization, while laminar gas flow in the drying chamber ensures gentle drying conditions. Moreover, electrostatic collectors have gradually replaced cyclone separators, ensuring high effectiveness in producing solid nanoparticles, even if a small volume of the sample is processed.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"52 2","pages":"101-111"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spray drying and nano spray drying as manufacturing methods of drug-loaded polymeric particles.\",\"authors\":\"Dominik Strojewski, Anna Krupa\",\"doi\":\"10.17219/pim/152230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this review, benefits and drawbacks of the process of spray drying and nano spray drying with regard to the manufacturing of polymeric particles for pharmaceutical applications are discussed. Spray drying has been used for many years in the food, chemical and pharmaceutical industries for converting liquids into solids, in order to form products of uniform appearance. The construction of spray dryer enables to atomize the liquid into small droplets, which ensures a large surface area for heat and mass transfer, and significantly shortens the processing. Each droplet dries to an individual solid microparticle of characteristic features that can be tailored by optimizing formulation variables and critical process parameters. Since spray drying technology is easy to scale up and can be used for drying almost any drug in a solution or suspension, there are numerous examples of products in clinical use, in which this process has been successfully applied to improve drug stability, enhance bioavailability or control its release rate. In recent years, nano spray drying technology has been proposed as a method for lab-scale manufacturing of nanoparticles. Such an approach is of particular interest at early stages of drug development, when a small amount of new chemical entities is available. Here, the nebulization technique is used for feed atomization, while laminar gas flow in the drying chamber ensures gentle drying conditions. Moreover, electrostatic collectors have gradually replaced cyclone separators, ensuring high effectiveness in producing solid nanoparticles, even if a small volume of the sample is processed.</p>\",\"PeriodicalId\":20355,\"journal\":{\"name\":\"Polimery w medycynie\",\"volume\":\"52 2\",\"pages\":\"101-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery w medycynie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/pim/152230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/152230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Spray drying and nano spray drying as manufacturing methods of drug-loaded polymeric particles.
In this review, benefits and drawbacks of the process of spray drying and nano spray drying with regard to the manufacturing of polymeric particles for pharmaceutical applications are discussed. Spray drying has been used for many years in the food, chemical and pharmaceutical industries for converting liquids into solids, in order to form products of uniform appearance. The construction of spray dryer enables to atomize the liquid into small droplets, which ensures a large surface area for heat and mass transfer, and significantly shortens the processing. Each droplet dries to an individual solid microparticle of characteristic features that can be tailored by optimizing formulation variables and critical process parameters. Since spray drying technology is easy to scale up and can be used for drying almost any drug in a solution or suspension, there are numerous examples of products in clinical use, in which this process has been successfully applied to improve drug stability, enhance bioavailability or control its release rate. In recent years, nano spray drying technology has been proposed as a method for lab-scale manufacturing of nanoparticles. Such an approach is of particular interest at early stages of drug development, when a small amount of new chemical entities is available. Here, the nebulization technique is used for feed atomization, while laminar gas flow in the drying chamber ensures gentle drying conditions. Moreover, electrostatic collectors have gradually replaced cyclone separators, ensuring high effectiveness in producing solid nanoparticles, even if a small volume of the sample is processed.