救命还是毁灭:脊椎动物胚胎发育中初级纤毛与细胞死亡的关系。

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY Journal of Developmental Biology Pub Date : 2022-12-12 DOI:10.3390/jdb10040052
Thorsten Pfirrmann, Christoph Gerhardt
{"title":"救命还是毁灭:脊椎动物胚胎发育中初级纤毛与细胞死亡的关系。","authors":"Thorsten Pfirrmann,&nbsp;Christoph Gerhardt","doi":"10.3390/jdb10040052","DOIUrl":null,"url":null,"abstract":"<p><p>The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"10 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783631/pdf/","citationCount":"1","resultStr":"{\"title\":\"Life-Saver or Undertaker: The Relationship between Primary Cilia and Cell Death in Vertebrate Embryonic Development.\",\"authors\":\"Thorsten Pfirrmann,&nbsp;Christoph Gerhardt\",\"doi\":\"10.3390/jdb10040052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783631/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb10040052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb10040052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

多细胞生物的发育需要一个紧密协调的细胞过程和细胞间信号网络。20多年来,人们已经知道初级纤毛深入参与细胞间信号的介导,并且纤毛功能障碍导致严重的发育缺陷。纤毛介导的信号传导调节细胞增殖、分化、迁移等过程。确保胚胎正常发育的另一个细胞过程是细胞死亡。虽然纤毛介导的信号传导对许多细胞过程的影响已被广泛研究,但初级纤毛与细胞死亡之间的关系在很大程度上仍然未知。本文简要回顾了目前关于这一关系的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life-Saver or Undertaker: The Relationship between Primary Cilia and Cell Death in Vertebrate Embryonic Development.

The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
期刊最新文献
How the Oocyte Nucleolus Is Turned into a Karyosphere: The Role of Heterochromatin and Structural Proteins. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates. Delayed Blastocyst Formation Reduces the Quality and Hatching Ability of Porcine Parthenogenetic Blastocysts by Increasing DNA Damage, Decreasing Cell Proliferation, and Altering Transcription Factor Expression Patterns. Myotube Guidance: Shaping up the Musculoskeletal System. Roles of the NR2F Family in the Development, Disease, and Cancer of the Lung.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1