H Arthur Woods, Amy L Moran, David Atkinson, Asta Audzijonyte, Michael Berenbrink, Francisco O Borges, Karen G Burnett, Louis E Burnett, Christopher J Coates, Rachel Collin, Elisa M Costa-Paiva, Murray I Duncan, Rasmus Ern, Elise M J Laetz, Lisa A Levin, Max Lindmark, Noelle M Lucey, Lillian R McCormick, James J Pierson, Rui Rosa, Michael R Roman, Eduardo Sampaio, Patricia M Schulte, Erik A Sperling, Aleksandra Walczyńska, Wilco C E P Verberk
{"title":"理解生物体对水生脱氧反应的综合方法。","authors":"H Arthur Woods, Amy L Moran, David Atkinson, Asta Audzijonyte, Michael Berenbrink, Francisco O Borges, Karen G Burnett, Louis E Burnett, Christopher J Coates, Rachel Collin, Elisa M Costa-Paiva, Murray I Duncan, Rasmus Ern, Elise M J Laetz, Lisa A Levin, Max Lindmark, Noelle M Lucey, Lillian R McCormick, James J Pierson, Rui Rosa, Michael R Roman, Eduardo Sampaio, Patricia M Schulte, Erik A Sperling, Aleksandra Walczyńska, Wilco C E P Verberk","doi":"10.1086/722899","DOIUrl":null,"url":null,"abstract":"Oxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two—warming and acidification—that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume (“An Oxygen Perspective on Climate Change”), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 2","pages":"85-103"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Integrative Approaches to Understanding Organismal Responses to Aquatic Deoxygenation.\",\"authors\":\"H Arthur Woods, Amy L Moran, David Atkinson, Asta Audzijonyte, Michael Berenbrink, Francisco O Borges, Karen G Burnett, Louis E Burnett, Christopher J Coates, Rachel Collin, Elisa M Costa-Paiva, Murray I Duncan, Rasmus Ern, Elise M J Laetz, Lisa A Levin, Max Lindmark, Noelle M Lucey, Lillian R McCormick, James J Pierson, Rui Rosa, Michael R Roman, Eduardo Sampaio, Patricia M Schulte, Erik A Sperling, Aleksandra Walczyńska, Wilco C E P Verberk\",\"doi\":\"10.1086/722899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two—warming and acidification—that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume (“An Oxygen Perspective on Climate Change”), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":\"243 2\",\"pages\":\"85-103\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/722899\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/722899","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Integrative Approaches to Understanding Organismal Responses to Aquatic Deoxygenation.
Oxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two—warming and acidification—that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume (“An Oxygen Perspective on Climate Change”), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.