{"title":"机器学习在肺移植中的应用:进展如何?","authors":"Evgeni Mekov , Viktoria Ilieva","doi":"10.1016/j.lpm.2022.104140","DOIUrl":null,"url":null,"abstract":"<div><p>Lung transplantation<span><span> has been accepted as a viable treatment for end-stage respiratory failure. While regression models continue to be a standard approach for attempting to predict patients’ outcomes after lung transplantation, more sophisticated supervised machine learning (ML) techniques are being developed and show encouraging results. Transplant clinicians could utilize ML as a decision-support tool in a variety of situations (e.g. waiting list mortality, donor selection, </span>immunosuppression, rejection prediction). Although for some topics ML is at an advanced stage of research (i.e. imaging and pathology) there are certain topics in lung transplantation that needs to be aware of the benefits it could provide.</span></p></div>","PeriodicalId":20530,"journal":{"name":"Presse Medicale","volume":"51 4","pages":"Article 104140"},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine learning in lung transplantation: Where are we?\",\"authors\":\"Evgeni Mekov , Viktoria Ilieva\",\"doi\":\"10.1016/j.lpm.2022.104140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lung transplantation<span><span> has been accepted as a viable treatment for end-stage respiratory failure. While regression models continue to be a standard approach for attempting to predict patients’ outcomes after lung transplantation, more sophisticated supervised machine learning (ML) techniques are being developed and show encouraging results. Transplant clinicians could utilize ML as a decision-support tool in a variety of situations (e.g. waiting list mortality, donor selection, </span>immunosuppression, rejection prediction). Although for some topics ML is at an advanced stage of research (i.e. imaging and pathology) there are certain topics in lung transplantation that needs to be aware of the benefits it could provide.</span></p></div>\",\"PeriodicalId\":20530,\"journal\":{\"name\":\"Presse Medicale\",\"volume\":\"51 4\",\"pages\":\"Article 104140\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Presse Medicale\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0755498222000331\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Presse Medicale","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0755498222000331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Machine learning in lung transplantation: Where are we?
Lung transplantation has been accepted as a viable treatment for end-stage respiratory failure. While regression models continue to be a standard approach for attempting to predict patients’ outcomes after lung transplantation, more sophisticated supervised machine learning (ML) techniques are being developed and show encouraging results. Transplant clinicians could utilize ML as a decision-support tool in a variety of situations (e.g. waiting list mortality, donor selection, immunosuppression, rejection prediction). Although for some topics ML is at an advanced stage of research (i.e. imaging and pathology) there are certain topics in lung transplantation that needs to be aware of the benefits it could provide.
期刊介绍:
Seule revue médicale "généraliste" de haut niveau, La Presse Médicale est l''équivalent francophone des grandes revues anglosaxonnes de publication et de formation continue.
A raison d''un numéro par mois, La Presse Médicale vous offre une double approche éditoriale :
- des publications originales (articles originaux, revues systématiques, cas cliniques) soumises à double expertise, portant sur les avancées médicales les plus récentes ;
- une partie orientée vers la FMC, vous propose une mise à jour permanente et de haut niveau de vos connaissances, sous forme de dossiers thématiques et de mises au point dans les principales spécialités médicales, pour vous aider à optimiser votre formation.