二甲醚自由基+O2反应体系的从头算热力学和动力学分析

Takahiro Yamada, Joseph W. Bozzelli, Tsan Lay
{"title":"二甲醚自由基+O2反应体系的从头算热力学和动力学分析","authors":"Takahiro Yamada,&nbsp;Joseph W. Bozzelli,&nbsp;Tsan Lay","doi":"10.1016/S0082-0784(98)80406-2","DOIUrl":null,"url":null,"abstract":"<div><p>Reaction pathways and kinetics are analyzed on CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub> reaction system using <em>ab initio</em> calculations to determine tehrmodynamic properties of reactants, intermediate radicals, and transitionstate (TS) compounds. Enthalpies of formation (<em>ΔH<sub>f298</sub><sup>o</sup></em>) are determined using the CBS-q//MP2(full)/6-31G(d,p) method with isodesmic reactions. Entropies (<em>S</em><sub>298</sub><sup>o</sup>) and heat capacities (<em>C<sub>p</sub>(T)</em> 300≤<em>T/K</em>≤1500) are determined using geometric parameters and vibrational frequencies obtained at the MP2(full)/6-31G(d,p) level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculated energy-dependent rate constants, <em>k(E)</em>, and the master equations is used to account for collisional stabilization. The dimethyl-ether radical CH<sub>3</sub>OC·H<sub>2</sub> (<em>ΔH<sub>f298</sub><sup>o</sup></em>=0.1 kcal/mol) adds to O<sub>2</sub> to form a peroxy radical CH<sub>3</sub>OCH<sub>2</sub>OO·(<em>ΔH<sub>f298</sub><sup>o</sup></em>=−33.9 kcal/mol). The peroxy radical can undergo dissociation back to reactants or isomerize via hydrogen shift (<em>E<sub>a,rxn</sub></em>=17.7 kcal/mol) to form a hydroperoxy alkyl radical C·H<sub>2</sub>OCH<sub>2</sub>OOH, (<em>ΔH<sub>f298</sub><sup>o</sup></em>=−26.5 kcal/mol). This alkyl radical can undergo β-scission reaction to formaldehyde (CH<sub>2</sub>O)+hydroperoxy methyl radical (C·H<sub>2</sub>OOH), (<em>E<sub>a, rxn</sub></em>=24.7 kcal/mol). The hydroperoxy methyl radical rapidly decomposes to a second CH<sub>2</sub>O plus OH. The reaction barriers for CH<sub>3</sub>OCH<sub>2</sub> +O<sub>2</sub> to 2 CH<sub>2</sub>O+OH are lower than the energy needed for reaction back to CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>, and provide a low-energy chain propagation path for dimethyl-ether oxidation.<span><span><span><math><mtable><mtr><mtd><mo>O</mo><mo>H</mo><mo>+</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>→</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>(</mo><mn>1</mn><mo>)</mo></mtd></mtr><mtr><mtd><munder><mrow><mo>+</mo><mo>)</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><mo>O</mo><mo>H</mo></mrow><mo>¯</mo></munder><mo>(</mo><mn>2</mn><mo>)</mo></mtd></mtr><mtr><mtd><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo></mtd></mtr></mtable></math></span></span></span>Comparison of calculated falloff with experiment indicates that the CBS-q calculated <em>E<sub>a, rxn</sub></em> for the TS of C·H<sub>2</sub>OCH<sub>2</sub>OOH→C·H<sub>2</sub>OOH+CH<sub>2</sub>O needs to be lowered in order to match the data of Sehested et al. Rate constants of important reactions are (<em>k=A(T/K)</em> exp(−<em>E<sub>a</sub>/RT</em>}), <em>A</em> in cm<sup>3</sup>/(mol s), <em>E<sub>A</sub></em> in kcal/mol): <em>k</em><sub>1</sub>, (2.33×10<sup>63</sup>)(<em>T</em>/K)<sup>−16.89</sup><em>e<sup>−11.89/RT</sup></em> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>3</sub>OCH<sub>2</sub>OO·; <em>k</em><sub>3</sub>, (<em>T</em>/K)<sup>−5.46</sup><em>e</em><sup>−8.59/RT</sup> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>2</sub>O+CH<sub>2</sub>O+OH at 1 atm..gif\"&gt;</p></div>","PeriodicalId":101203,"journal":{"name":"Symposium (International) on Combustion","volume":"27 1","pages":"Pages 201-209"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80406-2","citationCount":"4","resultStr":"{\"title\":\"Thermodynamic and kinetic analysis using AB initio calculations on dimethyl-ether radical+O2 reaction system\",\"authors\":\"Takahiro Yamada,&nbsp;Joseph W. Bozzelli,&nbsp;Tsan Lay\",\"doi\":\"10.1016/S0082-0784(98)80406-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reaction pathways and kinetics are analyzed on CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub> reaction system using <em>ab initio</em> calculations to determine tehrmodynamic properties of reactants, intermediate radicals, and transitionstate (TS) compounds. Enthalpies of formation (<em>ΔH<sub>f298</sub><sup>o</sup></em>) are determined using the CBS-q//MP2(full)/6-31G(d,p) method with isodesmic reactions. Entropies (<em>S</em><sub>298</sub><sup>o</sup>) and heat capacities (<em>C<sub>p</sub>(T)</em> 300≤<em>T/K</em>≤1500) are determined using geometric parameters and vibrational frequencies obtained at the MP2(full)/6-31G(d,p) level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculated energy-dependent rate constants, <em>k(E)</em>, and the master equations is used to account for collisional stabilization. The dimethyl-ether radical CH<sub>3</sub>OC·H<sub>2</sub> (<em>ΔH<sub>f298</sub><sup>o</sup></em>=0.1 kcal/mol) adds to O<sub>2</sub> to form a peroxy radical CH<sub>3</sub>OCH<sub>2</sub>OO·(<em>ΔH<sub>f298</sub><sup>o</sup></em>=−33.9 kcal/mol). The peroxy radical can undergo dissociation back to reactants or isomerize via hydrogen shift (<em>E<sub>a,rxn</sub></em>=17.7 kcal/mol) to form a hydroperoxy alkyl radical C·H<sub>2</sub>OCH<sub>2</sub>OOH, (<em>ΔH<sub>f298</sub><sup>o</sup></em>=−26.5 kcal/mol). This alkyl radical can undergo β-scission reaction to formaldehyde (CH<sub>2</sub>O)+hydroperoxy methyl radical (C·H<sub>2</sub>OOH), (<em>E<sub>a, rxn</sub></em>=24.7 kcal/mol). The hydroperoxy methyl radical rapidly decomposes to a second CH<sub>2</sub>O plus OH. The reaction barriers for CH<sub>3</sub>OCH<sub>2</sub> +O<sub>2</sub> to 2 CH<sub>2</sub>O+OH are lower than the energy needed for reaction back to CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>, and provide a low-energy chain propagation path for dimethyl-ether oxidation.<span><span><span><math><mtable><mtr><mtd><mo>O</mo><mo>H</mo><mo>+</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>→</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>(</mo><mn>1</mn><mo>)</mo></mtd></mtr><mtr><mtd><munder><mrow><mo>+</mo><mo>)</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><mo>O</mo><mo>H</mo></mrow><mo>¯</mo></munder><mo>(</mo><mn>2</mn><mo>)</mo></mtd></mtr><mtr><mtd><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo></mtd></mtr></mtable></math></span></span></span>Comparison of calculated falloff with experiment indicates that the CBS-q calculated <em>E<sub>a, rxn</sub></em> for the TS of C·H<sub>2</sub>OCH<sub>2</sub>OOH→C·H<sub>2</sub>OOH+CH<sub>2</sub>O needs to be lowered in order to match the data of Sehested et al. Rate constants of important reactions are (<em>k=A(T/K)</em> exp(−<em>E<sub>a</sub>/RT</em>}), <em>A</em> in cm<sup>3</sup>/(mol s), <em>E<sub>A</sub></em> in kcal/mol): <em>k</em><sub>1</sub>, (2.33×10<sup>63</sup>)(<em>T</em>/K)<sup>−16.89</sup><em>e<sup>−11.89/RT</sup></em> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>3</sub>OCH<sub>2</sub>OO·; <em>k</em><sub>3</sub>, (<em>T</em>/K)<sup>−5.46</sup><em>e</em><sup>−8.59/RT</sup> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>2</sub>O+CH<sub>2</sub>O+OH at 1 atm..gif\\\"&gt;</p></div>\",\"PeriodicalId\":101203,\"journal\":{\"name\":\"Symposium (International) on Combustion\",\"volume\":\"27 1\",\"pages\":\"Pages 201-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80406-2\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium (International) on Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0082078498804062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium (International) on Combustion","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0082078498804062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用从头算方法分析了CH3OC·H2+O2反应体系的反应途径和动力学,确定了反应物、中间自由基和过渡态化合物的热力学性质。生成焓(ΔHf298o)采用CBS-q//MP2(full)/6-31G(d,p)等速反应法测定。熵(s2980)和热容(Cp(T) 300≤T/K≤1500)是用理论的MP2(full)/6-31G(d,p)水平的几何参数和振动频率确定的。量子Rice-Ramsperger-Kassel (QRRK)分析用于计算与能量相关的速率常数k(E),并使用主方程来解释碰撞稳定。二甲基醚自由基CH3OC·H2 (ΔHf298o=0.1 kcal/mol)与O2结合形成过氧自由基ch3och200·(ΔHf298o=−33.9 kcal/mol)。过氧自由基可以解离回反应物或通过氢位移异构化(Ea,rxn=17.7 kcal/mol)形成羟基烷基自由基C·H2OCH2OOH (ΔHf298o=−26.5 kcal/mol)。该烷基自由基可与甲醛(CH2O)+羟基甲基自由基(C·H2OOH)发生β-裂解反应,(Ea, rxn=24.7 kcal/mol)。氢氧甲基迅速分解成第二个CH2O + OH。CH3OCH2 +O2到2CH2O+OH的反应势垒低于反应回CH3OC·H2+O2所需的能量,为二甲基醚氧化提供了低能链传播路径。OH+CH3OCH3→CH3OC⋅H2+H2O(1)+) CH3OCH3·H2+O2→2CH2O+OH¯(2)CH3OCH3+O2→2CH2O+H2O的TS计算值与实验值的比较表明,为了与Sehested等人的数据相匹配,需要降低cs -q计算的C·H2OCH2OOH→C·H2OOH+CH2O的Ea, rxn。重要反应的速率常数为(k=A(T/ k) exp(−Ea/RT}), A单位cm3/(mol s), Ea单位kcal/mol): k1, (2.33×1063)(T/ k)−16.89e−11.89/RT, CH3OC·H2+O2⇒ch3och200·;CH3OC·H2+O2⇒CH2O+CH2O+OH在1atm下的k3, (T/K)−5.46e−8.59/RT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic and kinetic analysis using AB initio calculations on dimethyl-ether radical+O2 reaction system

Reaction pathways and kinetics are analyzed on CH3OC·H2+O2 reaction system using ab initio calculations to determine tehrmodynamic properties of reactants, intermediate radicals, and transitionstate (TS) compounds. Enthalpies of formation (ΔHf298o) are determined using the CBS-q//MP2(full)/6-31G(d,p) method with isodesmic reactions. Entropies (S298o) and heat capacities (Cp(T) 300≤T/K≤1500) are determined using geometric parameters and vibrational frequencies obtained at the MP2(full)/6-31G(d,p) level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculated energy-dependent rate constants, k(E), and the master equations is used to account for collisional stabilization. The dimethyl-ether radical CH3OC·H2 (ΔHf298o=0.1 kcal/mol) adds to O2 to form a peroxy radical CH3OCH2OO·(ΔHf298o=−33.9 kcal/mol). The peroxy radical can undergo dissociation back to reactants or isomerize via hydrogen shift (Ea,rxn=17.7 kcal/mol) to form a hydroperoxy alkyl radical C·H2OCH2OOH, (ΔHf298o=−26.5 kcal/mol). This alkyl radical can undergo β-scission reaction to formaldehyde (CH2O)+hydroperoxy methyl radical (C·H2OOH), (Ea, rxn=24.7 kcal/mol). The hydroperoxy methyl radical rapidly decomposes to a second CH2O plus OH. The reaction barriers for CH3OCH2 +O2 to 2 CH2O+OH are lower than the energy needed for reaction back to CH3OC·H2+O2, and provide a low-energy chain propagation path for dimethyl-ether oxidation.OH+CH3OCH3CH3OCH2+H2O(1)+)CH3OCH2+O22CH2O+OH¯(2)CH3OCH3+O22CH2O+H2OComparison of calculated falloff with experiment indicates that the CBS-q calculated Ea, rxn for the TS of C·H2OCH2OOH→C·H2OOH+CH2O needs to be lowered in order to match the data of Sehested et al. Rate constants of important reactions are (k=A(T/K) exp(−Ea/RT}), A in cm3/(mol s), EA in kcal/mol): k1, (2.33×1063)(T/K)−16.89e−11.89/RT for CH3OC·H2+O2⇒CH3OCH2OO·; k3, (T/K)−5.46e−8.59/RT for CH3OC·H2+O2⇒CH2O+CH2O+OH at 1 atm..gif">

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Preface Introduction The effects of equivalence ratio on the formation of polycyclic aromatic hydrocarbons and soot in premixed methane flames C60, C60O, C70 and C70O fullerene formations in premixed benzene-oxygen flames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1