基于生物医学数据的多处理效果估计。

Raquel Aoki, Yizhou Chen, Martin Ester
{"title":"基于生物医学数据的多处理效果估计。","authors":"Raquel Aoki,&nbsp;Yizhou Chen,&nbsp;Martin Ester","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Several biomedical applications contain multiple treatments from which we want to estimate the causal effect on a given outcome. Most existing Causal Inference methods, however, focus on single treatments. In this work, we propose a neural network that adopts a multi-task learning approach to estimate the effect of multiple treatments. We validated M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis showed that our method makes more accurate estimations than existing baselines.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"28 ","pages":"299-310"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-treatment Effect Estimation from Biomedical Data.\",\"authors\":\"Raquel Aoki,&nbsp;Yizhou Chen,&nbsp;Martin Ester\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several biomedical applications contain multiple treatments from which we want to estimate the causal effect on a given outcome. Most existing Causal Inference methods, however, focus on single treatments. In this work, we propose a neural network that adopts a multi-task learning approach to estimate the effect of multiple treatments. We validated M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis showed that our method makes more accurate estimations than existing baselines.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"28 \",\"pages\":\"299-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

几种生物医学应用包含多种治疗方法,我们希望从中估计对给定结果的因果效应。然而,大多数现有的因果推理方法都集中在单一的处理上。在这项工作中,我们提出了一个采用多任务学习方法的神经网络来估计多种治疗的效果。我们在模拟生物医学数据集的三个合成基准数据集中验证了M3E2。我们的分析表明,我们的方法比现有的基线做出更准确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-treatment Effect Estimation from Biomedical Data.

Several biomedical applications contain multiple treatments from which we want to estimate the causal effect on a given outcome. Most existing Causal Inference methods, however, focus on single treatments. In this work, we propose a neural network that adopts a multi-task learning approach to estimate the effect of multiple treatments. We validated M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis showed that our method makes more accurate estimations than existing baselines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Generating new drug repurposing hypotheses using disease-specific hypergraphs. Impact of Measurement Noise on Genetic Association Studies of Cardiac Function. Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data. intCC: An efficient weighted integrative consensus clustering of multimodal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1