{"title":"细菌对头孢他啶/阿维巴坦耐药的分子机制","authors":"Luying Xiong, Xueting Wang, Yuan Wang, Wei Yu, Yanzi Zhou, Xiaohui Chi, Tingting Xiao, Yonghong Xiao","doi":"10.1002/wsbm.1571","DOIUrl":null,"url":null,"abstract":"<p><p>Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to bla<sub>KPC</sub> mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"14 6","pages":"e1571"},"PeriodicalIF":4.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788277/pdf/","citationCount":"5","resultStr":"{\"title\":\"Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam.\",\"authors\":\"Luying Xiong, Xueting Wang, Yuan Wang, Wei Yu, Yanzi Zhou, Xiaohui Chi, Tingting Xiao, Yonghong Xiao\",\"doi\":\"10.1002/wsbm.1571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to bla<sub>KPC</sub> mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>\",\"PeriodicalId\":29896,\"journal\":{\"name\":\"WIREs Mechanisms of Disease\",\"volume\":\"14 6\",\"pages\":\"e1571\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788277/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Mechanisms of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1571\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1571","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam.
Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to blaKPC mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.