暴露于脂多糖和硅酸钙基材料会影响牙髓细胞的行为。

Q2 Medicine Brazilian dental journal Pub Date : 2022-09-01 DOI:10.1590/0103-6440202204990
Marlus da Silva Pedrosa, Handially Dos Santos Vilela, Juliana Garuba Rahhal, Natália Pieretti Bueno, Fabianne Soares Lima, Fernando Neves Nogueira, Carla Renata Sipert
{"title":"暴露于脂多糖和硅酸钙基材料会影响牙髓细胞的行为。","authors":"Marlus da Silva Pedrosa,&nbsp;Handially Dos Santos Vilela,&nbsp;Juliana Garuba Rahhal,&nbsp;Natália Pieretti Bueno,&nbsp;Fabianne Soares Lima,&nbsp;Fernando Neves Nogueira,&nbsp;Carla Renata Sipert","doi":"10.1590/0103-6440202204990","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.</p>","PeriodicalId":9211,"journal":{"name":"Brazilian dental journal","volume":"33 5","pages":"9-17"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645168/pdf/","citationCount":"1","resultStr":"{\"title\":\"Exposure to lipopolysaccharide and calcium silicate-based materials affects the behavior of dental pulp cells.\",\"authors\":\"Marlus da Silva Pedrosa,&nbsp;Handially Dos Santos Vilela,&nbsp;Juliana Garuba Rahhal,&nbsp;Natália Pieretti Bueno,&nbsp;Fabianne Soares Lima,&nbsp;Fernando Neves Nogueira,&nbsp;Carla Renata Sipert\",\"doi\":\"10.1590/0103-6440202204990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.</p>\",\"PeriodicalId\":9211,\"journal\":{\"name\":\"Brazilian dental journal\",\"volume\":\"33 5\",\"pages\":\"9-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645168/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian dental journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0103-6440202204990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian dental journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0103-6440202204990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

本研究评估了暴露于脂多糖(LPS)和应用硅酸钙基材料(CSBM)后人牙髓细胞(hDPCs)的细胞活力、细胞因子产生和矿化潜力。采用红外光谱对CSBM进行表征(n = 3)。制备Bio-C Repair、Biodentine、Cimmo HD和MTA Repair HP提取物,并按1:1、1:4和1:16稀释。建立hDPCs培养,用1µg/mL的大肠杆菌LPS处理或不处理7天。24、48、72 h采用MTT法测定细胞活力(n = 6),第7天测定碱性磷酸酶(ALP)活性(n = 4), 24 h采用ELISA法测定Il-10和TNF-α (n = 6),数据采用方差分析和Tukey检验(α = 0.05)进行分析。lps激活的hPDCs在48和72 h的细胞活力高于未处理的对照组(p < 0.05)。未处理和lps活化的hPDCs在Biodentine和Cimmo HP上的差异(p < 0.05)。CSBM对细胞活力有显著影响(p < 0.05)。lps激活的hDPCs中ALP活性升高(p < 0.05)。各组间TNF-α浓度差异无统计学意义(p > 0.05)。CSBM提高了Il-10的产量(p < 0.05)。lps激活的hDPCs细胞活力和ALP活性均有所提高。CSBM显示出轻微的毒性,并且能够提高未处理和lps激活的hDPCs的细胞活力和矿化潜力。CSBM还能诱导抗炎机制,但不影响促炎机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exposure to lipopolysaccharide and calcium silicate-based materials affects the behavior of dental pulp cells.

This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian dental journal
Brazilian dental journal Dentistry-Dentistry (all)
CiteScore
2.20
自引率
0.00%
发文量
69
审稿时长
12 weeks
期刊介绍: Brazilian Dental Journal, publishes Full-Length Papers, Short Communications and Case Reports, dealing with dentistry or related disciplines and edited six times a year.
期刊最新文献
Can a dentin bonding agent prevent color change in regenerative endodontic procedures? An in vitro evaluation Antibacterial ability of different activated irrigation after root canal preparation: intratubular analyses Inhibition of incipient caries lesion progression by different fluoridated varnishes A new hydroxyapatite-alginate-gelatin biocomposite favor bone regeneration in a critical-sized calvarial defect model Prevalence of lectures about dental esthetics and female speakers in three Brazilian conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1