{"title":"日本血吸虫28-kDa谷胱甘肽转移酶与溴磺胺基眼蛋白相互作用的生物物理描述","authors":"Kagiso Pooe, Monare Thulo, Hattie Makumbe, Blessing Akumadu, Oluwatobin Otun, Chinyere Aloke, Ikechukwu Achilonu","doi":"10.1016/j.molbiopara.2022.111524","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Glutathione<span><span><span> transferases (GSTs) are major detoxification </span>enzymes vital for the survival and reproduction of </span>schistosomes<span> during infection in humans. Schistosoma encode two GST isoenzymes, the 26- and 28-kDa </span></span></span>isoforms<span>, that show different substrate specificities<span> and cellular localisations. Bromosulfophthalein (BSP) has been identified and characterised as a potent 26-kDa </span></span></span>Schistosoma japonicum<span> GST (Sj26GST) inhibitor with an anthelmintic<span><span> potential. This study describes the structure, function, and ligandin properties of the 28-kDa Schistosoma japonicum GST (Sj28GST) towards BSP. Enzyme kinetics show that BSP is a potent </span>enzyme inhibitor, with a specific activity decrease</span></span></span><del>s</del> from 60.4 µmol/min/mg to 0.0742 µmol/min/mg and an IC<sub>50</sub><span> in the micromolar range of 0.74 µM. Far-UV circular dichroism<span> confirmed that purified Sj28GST follows a typical GST fold, which is predominantly alpha-helical. Fluorescence spectroscopy<span> suggests that BSP binding occurs at a site distinct from the glutathione-binding site (G-site); however, the binding does not alter the local G-site environment. Isothermal titration calorimetry studies show that the binding of BSP to Sj28GST is exergonic (∆</span></span></span><em>G</em><span>°= −33 kJ/mol) and enthalpically-driven, with a stoichiometry of one BSP per dimer. The stability of Sj28GST (∆G</span><sub>(H2O)</sub> = 4.7 kcal/mol) is notably lower than Sj26GST, owing to differences in the enzyme’s dimeric interfaces. We conclude that Sj28GST shares similar biophysical characteristics with Sj26GST based on its kinetic properties and susceptibility to low concentrations of BSP. The study supports the potential benefits of re-purposing BSP as a potential drug or prodrug to mitigate the scourge of schistosomiasis.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biophysical description of Bromosulfophthalein interaction with the 28-kDa glutathione transferase from Schistosoma japonicum\",\"authors\":\"Kagiso Pooe, Monare Thulo, Hattie Makumbe, Blessing Akumadu, Oluwatobin Otun, Chinyere Aloke, Ikechukwu Achilonu\",\"doi\":\"10.1016/j.molbiopara.2022.111524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Glutathione<span><span><span> transferases (GSTs) are major detoxification </span>enzymes vital for the survival and reproduction of </span>schistosomes<span> during infection in humans. Schistosoma encode two GST isoenzymes, the 26- and 28-kDa </span></span></span>isoforms<span>, that show different substrate specificities<span> and cellular localisations. Bromosulfophthalein (BSP) has been identified and characterised as a potent 26-kDa </span></span></span>Schistosoma japonicum<span> GST (Sj26GST) inhibitor with an anthelmintic<span><span> potential. This study describes the structure, function, and ligandin properties of the 28-kDa Schistosoma japonicum GST (Sj28GST) towards BSP. Enzyme kinetics show that BSP is a potent </span>enzyme inhibitor, with a specific activity decrease</span></span></span><del>s</del> from 60.4 µmol/min/mg to 0.0742 µmol/min/mg and an IC<sub>50</sub><span> in the micromolar range of 0.74 µM. Far-UV circular dichroism<span> confirmed that purified Sj28GST follows a typical GST fold, which is predominantly alpha-helical. Fluorescence spectroscopy<span> suggests that BSP binding occurs at a site distinct from the glutathione-binding site (G-site); however, the binding does not alter the local G-site environment. Isothermal titration calorimetry studies show that the binding of BSP to Sj28GST is exergonic (∆</span></span></span><em>G</em><span>°= −33 kJ/mol) and enthalpically-driven, with a stoichiometry of one BSP per dimer. The stability of Sj28GST (∆G</span><sub>(H2O)</sub> = 4.7 kcal/mol) is notably lower than Sj26GST, owing to differences in the enzyme’s dimeric interfaces. We conclude that Sj28GST shares similar biophysical characteristics with Sj26GST based on its kinetic properties and susceptibility to low concentrations of BSP. The study supports the potential benefits of re-purposing BSP as a potential drug or prodrug to mitigate the scourge of schistosomiasis.</p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685122000780\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000780","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biophysical description of Bromosulfophthalein interaction with the 28-kDa glutathione transferase from Schistosoma japonicum
Glutathione transferases (GSTs) are major detoxification enzymes vital for the survival and reproduction of schistosomes during infection in humans. Schistosoma encode two GST isoenzymes, the 26- and 28-kDa isoforms, that show different substrate specificities and cellular localisations. Bromosulfophthalein (BSP) has been identified and characterised as a potent 26-kDa Schistosoma japonicum GST (Sj26GST) inhibitor with an anthelmintic potential. This study describes the structure, function, and ligandin properties of the 28-kDa Schistosoma japonicum GST (Sj28GST) towards BSP. Enzyme kinetics show that BSP is a potent enzyme inhibitor, with a specific activity decreases from 60.4 µmol/min/mg to 0.0742 µmol/min/mg and an IC50 in the micromolar range of 0.74 µM. Far-UV circular dichroism confirmed that purified Sj28GST follows a typical GST fold, which is predominantly alpha-helical. Fluorescence spectroscopy suggests that BSP binding occurs at a site distinct from the glutathione-binding site (G-site); however, the binding does not alter the local G-site environment. Isothermal titration calorimetry studies show that the binding of BSP to Sj28GST is exergonic (∆G°= −33 kJ/mol) and enthalpically-driven, with a stoichiometry of one BSP per dimer. The stability of Sj28GST (∆G(H2O) = 4.7 kcal/mol) is notably lower than Sj26GST, owing to differences in the enzyme’s dimeric interfaces. We conclude that Sj28GST shares similar biophysical characteristics with Sj26GST based on its kinetic properties and susceptibility to low concentrations of BSP. The study supports the potential benefits of re-purposing BSP as a potential drug or prodrug to mitigate the scourge of schistosomiasis.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.