Amy D Stockwell, Michael C Chang, Anubha Mahajan, William Forrest, Neha Anegondi, Rion K Pendergrass, Suresh Selvaraj, Jens Reeder, Eric Wei, Victor A Iglesias, Natalie M Creps, Laura Macri, Andrea N Neeranjan, Marcel P van der Brug, Suzie J Scales, Mark I McCarthy, Brian L Yaspan
{"title":"多祖先GWAS分析确定了两个与糖尿病眼病相关的新基因座,并强调APOL1是糖尿病黄斑水肿患者的高危基因座。","authors":"Amy D Stockwell, Michael C Chang, Anubha Mahajan, William Forrest, Neha Anegondi, Rion K Pendergrass, Suresh Selvaraj, Jens Reeder, Eric Wei, Victor A Iglesias, Natalie M Creps, Laura Macri, Andrea N Neeranjan, Marcel P van der Brug, Suzie J Scales, Mark I McCarthy, Brian L Yaspan","doi":"10.1371/journal.pgen.1010609","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a common complication of diabetes. Approximately 20% of DR patients have diabetic macular edema (DME) characterized by fluid leakage into the retina. There is a genetic component to DR and DME risk, but few replicable loci. Because not all DR cases have DME, we focused on DME to increase power, and conducted a multi-ancestry GWAS to assess DME risk in a total of 1,502 DME patients and 5,603 non-DME controls in discovery and replication datasets. Two loci reached GWAS significance (p<5x10-8). The strongest association was rs2239785, (K150E) in APOL1. The second finding was rs10402468, which co-localized to PLVAP and ANKLE1 in vascular / endothelium tissues. We conducted multiple sensitivity analyses to establish that the associations were specific to DME status and did not reflect diabetes status or other diabetic complications. Here we report two novel loci for risk of DME which replicated in multiple clinical trial and biobank derived datasets. One of these loci, containing the gene APOL1, is a risk factor in African American DME and DKD patients, indicating that this locus plays a broader role in diabetic complications for multiple ancestries. Trial Registration: NCT00473330, NCT00473382, NCT03622580, NCT03622593, NCT04108156.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 8","pages":"e1010609"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-ancestry GWAS analysis identifies two novel loci associated with diabetic eye disease and highlights APOL1 as a high risk locus in patients with diabetic macular edema.\",\"authors\":\"Amy D Stockwell, Michael C Chang, Anubha Mahajan, William Forrest, Neha Anegondi, Rion K Pendergrass, Suresh Selvaraj, Jens Reeder, Eric Wei, Victor A Iglesias, Natalie M Creps, Laura Macri, Andrea N Neeranjan, Marcel P van der Brug, Suzie J Scales, Mark I McCarthy, Brian L Yaspan\",\"doi\":\"10.1371/journal.pgen.1010609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy (DR) is a common complication of diabetes. Approximately 20% of DR patients have diabetic macular edema (DME) characterized by fluid leakage into the retina. There is a genetic component to DR and DME risk, but few replicable loci. Because not all DR cases have DME, we focused on DME to increase power, and conducted a multi-ancestry GWAS to assess DME risk in a total of 1,502 DME patients and 5,603 non-DME controls in discovery and replication datasets. Two loci reached GWAS significance (p<5x10-8). The strongest association was rs2239785, (K150E) in APOL1. The second finding was rs10402468, which co-localized to PLVAP and ANKLE1 in vascular / endothelium tissues. We conducted multiple sensitivity analyses to establish that the associations were specific to DME status and did not reflect diabetes status or other diabetic complications. Here we report two novel loci for risk of DME which replicated in multiple clinical trial and biobank derived datasets. One of these loci, containing the gene APOL1, is a risk factor in African American DME and DKD patients, indicating that this locus plays a broader role in diabetic complications for multiple ancestries. Trial Registration: NCT00473330, NCT00473382, NCT03622580, NCT03622593, NCT04108156.</p>\",\"PeriodicalId\":20266,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"19 8\",\"pages\":\"e1010609\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1010609\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1010609","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Multi-ancestry GWAS analysis identifies two novel loci associated with diabetic eye disease and highlights APOL1 as a high risk locus in patients with diabetic macular edema.
Diabetic retinopathy (DR) is a common complication of diabetes. Approximately 20% of DR patients have diabetic macular edema (DME) characterized by fluid leakage into the retina. There is a genetic component to DR and DME risk, but few replicable loci. Because not all DR cases have DME, we focused on DME to increase power, and conducted a multi-ancestry GWAS to assess DME risk in a total of 1,502 DME patients and 5,603 non-DME controls in discovery and replication datasets. Two loci reached GWAS significance (p<5x10-8). The strongest association was rs2239785, (K150E) in APOL1. The second finding was rs10402468, which co-localized to PLVAP and ANKLE1 in vascular / endothelium tissues. We conducted multiple sensitivity analyses to establish that the associations were specific to DME status and did not reflect diabetes status or other diabetic complications. Here we report two novel loci for risk of DME which replicated in multiple clinical trial and biobank derived datasets. One of these loci, containing the gene APOL1, is a risk factor in African American DME and DKD patients, indicating that this locus plays a broader role in diabetic complications for multiple ancestries. Trial Registration: NCT00473330, NCT00473382, NCT03622580, NCT03622593, NCT04108156.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.