完美的空间混合采样

Pub Date : 2022-12-01 Epub Date: 2022-02-18 DOI:10.1002/rsa.21079
Weiming Feng, Heng Guo, Yitong Yin
{"title":"完美的空间混合采样","authors":"Weiming Feng, Heng Guo, Yitong Yin","doi":"10.1002/rsa.21079","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a new perfect sampling technique that can be applied to general Gibbs distributions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular, in graphs with subexponential neighborhood growth like <math> <mrow> <msup><mrow><mi>ℤ</mi></mrow> <mrow><mi>d</mi></mrow> </msup> </mrow> </math> , our algorithm achieves linear running time as long as Gibbs sampling is rapidly mixing. As concrete applications, we obtain the currently best perfect samplers for colorings and for monomer-dimer models in such graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/27/RSA-61-678.PMC9790483.pdf","citationCount":"0","resultStr":"{\"title\":\"Perfect sampling from spatial mixing.\",\"authors\":\"Weiming Feng, Heng Guo, Yitong Yin\",\"doi\":\"10.1002/rsa.21079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a new perfect sampling technique that can be applied to general Gibbs distributions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular, in graphs with subexponential neighborhood growth like <math> <mrow> <msup><mrow><mi>ℤ</mi></mrow> <mrow><mi>d</mi></mrow> </msup> </mrow> </math> , our algorithm achieves linear running time as long as Gibbs sampling is rapidly mixing. As concrete applications, we obtain the currently best perfect samplers for colorings and for monomer-dimer models in such graphs.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/27/RSA-61-678.PMC9790483.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的完美采样技术,它可以应用于一般的吉布斯分布,而且如果相关性的衰减速度快于邻域增长速度,运行时间也是线性的。特别是在ℤ d 这样具有亚指数邻域增长的图中,只要吉布斯采样快速混合,我们的算法就能实现线性运行时间。在具体应用中,我们得到了目前在这类图中用于着色和单体-二聚体模型的最佳完美采样器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Perfect sampling from spatial mixing.

We introduce a new perfect sampling technique that can be applied to general Gibbs distributions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular, in graphs with subexponential neighborhood growth like d , our algorithm achieves linear running time as long as Gibbs sampling is rapidly mixing. As concrete applications, we obtain the currently best perfect samplers for colorings and for monomer-dimer models in such graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1