将不同细胞系直接重新编程为胰腺β样细胞。

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cellular reprogramming Pub Date : 2022-10-01 Epub Date: 2022-07-15 DOI:10.1089/cell.2022.0048
Jonathan L Colarusso, Qiao Zhou
{"title":"将不同细胞系直接重新编程为胰腺β样细胞。","authors":"Jonathan L Colarusso,&nbsp;Qiao Zhou","doi":"10.1089/cell.2022.0048","DOIUrl":null,"url":null,"abstract":"<p><p>One major goal of regenerative medicine is the production of pancreatic endocrine islets to treat insulin-dependent diabetic patients. Among the different methods developed to achieve this goal, a particularly promising approach is direct lineage reprogramming, in which non-β-cells are directly converted to glucose-responsive, insulin-secreting β-like cells. Efforts by different research groups have led to critical insights in the inducing factors necessary and types of somatic tissues suitable for direct conversion to β-like cells. Nevertheless, there is limited understanding of the molecular mechanisms underlying direct cell fate conversion. Significant challenges also remain in translating discoveries into therapeutics that will eventually benefit diabetic patients. This review aims to cover the advances made in the direct reprogramming of somatic cells into β-like cells and discuss the remaining challenges.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634980/pdf/cell.2022.0048.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct Reprogramming of Different Cell Lineages into Pancreatic β-Like Cells.\",\"authors\":\"Jonathan L Colarusso,&nbsp;Qiao Zhou\",\"doi\":\"10.1089/cell.2022.0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One major goal of regenerative medicine is the production of pancreatic endocrine islets to treat insulin-dependent diabetic patients. Among the different methods developed to achieve this goal, a particularly promising approach is direct lineage reprogramming, in which non-β-cells are directly converted to glucose-responsive, insulin-secreting β-like cells. Efforts by different research groups have led to critical insights in the inducing factors necessary and types of somatic tissues suitable for direct conversion to β-like cells. Nevertheless, there is limited understanding of the molecular mechanisms underlying direct cell fate conversion. Significant challenges also remain in translating discoveries into therapeutics that will eventually benefit diabetic patients. This review aims to cover the advances made in the direct reprogramming of somatic cells into β-like cells and discuss the remaining challenges.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634980/pdf/cell.2022.0048.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2022.0048\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2022.0048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

再生医学的一个主要目标是生产胰腺内分泌胰岛来治疗胰岛素依赖型糖尿病患者。在为实现这一目标而开发的不同方法中,一种特别有前途的方法是直接谱系重编程,即非β细胞直接转化为葡萄糖反应性、分泌胰岛素的β样细胞。不同研究小组的努力导致了对必要的诱导因子和适合直接转化为β样细胞的体细胞组织类型的关键见解。然而,对直接细胞命运转换的分子机制了解有限。在将这些发现转化为最终使糖尿病患者受益的治疗方法方面,仍然存在重大挑战。这篇综述旨在介绍体细胞直接重编程为β样细胞的进展,并讨论剩余的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Reprogramming of Different Cell Lineages into Pancreatic β-Like Cells.

One major goal of regenerative medicine is the production of pancreatic endocrine islets to treat insulin-dependent diabetic patients. Among the different methods developed to achieve this goal, a particularly promising approach is direct lineage reprogramming, in which non-β-cells are directly converted to glucose-responsive, insulin-secreting β-like cells. Efforts by different research groups have led to critical insights in the inducing factors necessary and types of somatic tissues suitable for direct conversion to β-like cells. Nevertheless, there is limited understanding of the molecular mechanisms underlying direct cell fate conversion. Significant challenges also remain in translating discoveries into therapeutics that will eventually benefit diabetic patients. This review aims to cover the advances made in the direct reprogramming of somatic cells into β-like cells and discuss the remaining challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
期刊最新文献
A New Frontier in Tumor Eradication: Harnessing In Vivo Cellular Reprogramming for Durable Cancer Immunotherapy. Deciphering the Sertoli Cell Signaling Pathway with Protein-Protein Interaction, Single-Cell Sequencing, and Gene Ontology. Reprogramming Stars #18: Engineering Cell Fates and Preventing Disease by Repressing Unwanted Plasticity-An Interview with Dr. Moritz Mall. Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning. Rewinding the Tape to Identify Intrinsic Determinants of Reprogramming Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1