模拟时间对终点法预测束缚自由能的影响。

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-10-01 DOI:10.1142/S021972002250024X
Babak Sokouti, Siavoush Dastmalchi, Maryam Hamzeh-Mivehroud
{"title":"模拟时间对终点法预测束缚自由能的影响。","authors":"Babak Sokouti,&nbsp;Siavoush Dastmalchi,&nbsp;Maryam Hamzeh-Mivehroud","doi":"10.1142/S021972002250024X","DOIUrl":null,"url":null,"abstract":"<p><p>The profound impact of <i>in silico</i> studies for a fast-paced drug discovery pipeline is undeniable for pharmaceutical community. The rational design of novel drug candidates necessitates considering optimization of their different aspects prior to synthesis and biological evaluations. The affinity prediction of small ligands to target of interest for rank-ordering the potential ligands is one of the most routinely used steps in the context of virtual screening. So, the end-point methods were employed for binding free energy estimation focusing on evaluating simulation time effect. Then, a set of human aldose reductase inhibitors were selected for molecular dynamics (MD)-based binding free energy calculations. A total of 100[Formula: see text]ns MD simulation time was conducted for the ligand-receptor complexes followed by prediction of binding free energies using MM/PB(GB)SA and LIE approaches under different simulation time. The results revealed that a maximum of 30[Formula: see text]ns simulation time is sufficient for determination of binding affinities inferred from steady trend of squared correlation values (R<sup>2</sup>) between experimental and predicted [Formula: see text]G as a function of MD simulation time. In conclusion, the MM/PB(GB)SA algorithms performed well in terms of binding affinity prediction compared to LIE approach. The results provide new insights for large-scale applications of such predictions in an affordable computational cost.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The impact of simulation time in predicting binding free energies using end-point approaches.\",\"authors\":\"Babak Sokouti,&nbsp;Siavoush Dastmalchi,&nbsp;Maryam Hamzeh-Mivehroud\",\"doi\":\"10.1142/S021972002250024X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The profound impact of <i>in silico</i> studies for a fast-paced drug discovery pipeline is undeniable for pharmaceutical community. The rational design of novel drug candidates necessitates considering optimization of their different aspects prior to synthesis and biological evaluations. The affinity prediction of small ligands to target of interest for rank-ordering the potential ligands is one of the most routinely used steps in the context of virtual screening. So, the end-point methods were employed for binding free energy estimation focusing on evaluating simulation time effect. Then, a set of human aldose reductase inhibitors were selected for molecular dynamics (MD)-based binding free energy calculations. A total of 100[Formula: see text]ns MD simulation time was conducted for the ligand-receptor complexes followed by prediction of binding free energies using MM/PB(GB)SA and LIE approaches under different simulation time. The results revealed that a maximum of 30[Formula: see text]ns simulation time is sufficient for determination of binding affinities inferred from steady trend of squared correlation values (R<sup>2</sup>) between experimental and predicted [Formula: see text]G as a function of MD simulation time. In conclusion, the MM/PB(GB)SA algorithms performed well in terms of binding affinity prediction compared to LIE approach. The results provide new insights for large-scale applications of such predictions in an affordable computational cost.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S021972002250024X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002250024X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

对于制药界来说,计算机研究对快节奏药物发现管道的深远影响是不可否认的。新型候选药物的合理设计需要在合成和生物学评价之前考虑其不同方面的优化。小配体对目标感兴趣的亲和力预测对潜在配体进行排序是虚拟筛选中最常用的步骤之一。因此,采用终点法进行约束自由能估计,重点是评估仿真时间效应。然后,选择一组人醛糖还原酶抑制剂进行基于分子动力学的结合自由能计算。对配体-受体配合物进行了100 ns MD模拟时间,然后采用MM/PB(GB)SA和LIE方法预测了不同模拟时间下的结合自由能。结果表明,根据实验与预测的相关平方值(R2)的稳定趋势[公式:见文]G作为MD模拟时间的函数,最大30 ns模拟时间就足以确定结合亲和力。综上所述,与LIE方法相比,MM/PB(GB)SA算法在结合亲和力预测方面表现良好。研究结果为这种预测的大规模应用提供了新的见解,而且计算成本低廉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of simulation time in predicting binding free energies using end-point approaches.

The profound impact of in silico studies for a fast-paced drug discovery pipeline is undeniable for pharmaceutical community. The rational design of novel drug candidates necessitates considering optimization of their different aspects prior to synthesis and biological evaluations. The affinity prediction of small ligands to target of interest for rank-ordering the potential ligands is one of the most routinely used steps in the context of virtual screening. So, the end-point methods were employed for binding free energy estimation focusing on evaluating simulation time effect. Then, a set of human aldose reductase inhibitors were selected for molecular dynamics (MD)-based binding free energy calculations. A total of 100[Formula: see text]ns MD simulation time was conducted for the ligand-receptor complexes followed by prediction of binding free energies using MM/PB(GB)SA and LIE approaches under different simulation time. The results revealed that a maximum of 30[Formula: see text]ns simulation time is sufficient for determination of binding affinities inferred from steady trend of squared correlation values (R2) between experimental and predicted [Formula: see text]G as a function of MD simulation time. In conclusion, the MM/PB(GB)SA algorithms performed well in terms of binding affinity prediction compared to LIE approach. The results provide new insights for large-scale applications of such predictions in an affordable computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1